你太谦虚 发表于 2025-3-21 17:38:30
书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0278722<br><br> <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0278722<br><br> <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0278722<br><br> <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0278722<br><br> <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0278722<br><br> <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0278722<br><br> <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0278722<br><br> <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0278722<br><br> <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0278722<br><br> <br><br>书目名称Differential Galois Theory and Non-Integrability of Hamiltonian Systems读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0278722<br><br> <br><br>干旱 发表于 2025-3-21 21:52:22
Progress in Mathematicshttp://image.papertrans.cn/d/image/278722.jpgBET 发表于 2025-3-22 02:07:22
Differential Galois Theory and Non-Integrability of Hamiltonian Systems978-3-0348-8718-2Series ISSN 0743-1643 Series E-ISSN 2296-505XCOWER 发表于 2025-3-22 04:43:32
Lipogenesis Pathway: Radiolabeled Choline,n and A and . are, in general, complex parameters. It is assumed, in what follows, that the roots of the polynomial . associated to . are simple (otherwise . is reduced to elementary functions). This is ensured if the discriminant.is non-zero, where g. and g. are the associated invariants (see Chapter 2).Torrid 发表于 2025-3-22 12:15:46
http://reply.papertrans.cn/28/2788/278722/278722_5.png代理人 发表于 2025-3-22 15:34:28
http://reply.papertrans.cn/28/2788/278722/278722_6.png代理人 发表于 2025-3-22 19:34:39
Laura Evangelista,Alessandra ZorzAfter the long preliminary work of Chapters 2 and 3, we now give the central theoretical results of this book. They will be used in a systematic way in the rest of this book.抒情短诗 发表于 2025-3-23 00:11:09
http://reply.papertrans.cn/28/2788/278722/278722_8.pngGONG 发表于 2025-3-23 05:20:20
Introduction,During recent years the search for non-integrability criteria for Hamiltonian systems based upon the behaviour of solutions in the complex domain has acquired more and more relevance.玷污 发表于 2025-3-23 06:20:25
Non-integrability Theorems,After the long preliminary work of Chapters 2 and 3, we now give the central theoretical results of this book. They will be used in a systematic way in the rest of this book.