bile-acids 发表于 2025-3-21 16:37:24

书目名称Differential Equations and Mathematical Physics影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0278680<br><br>        <br><br>书目名称Differential Equations and Mathematical Physics影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0278680<br><br>        <br><br>书目名称Differential Equations and Mathematical Physics网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0278680<br><br>        <br><br>书目名称Differential Equations and Mathematical Physics网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0278680<br><br>        <br><br>书目名称Differential Equations and Mathematical Physics被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0278680<br><br>        <br><br>书目名称Differential Equations and Mathematical Physics被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0278680<br><br>        <br><br>书目名称Differential Equations and Mathematical Physics年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0278680<br><br>        <br><br>书目名称Differential Equations and Mathematical Physics年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0278680<br><br>        <br><br>书目名称Differential Equations and Mathematical Physics读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0278680<br><br>        <br><br>书目名称Differential Equations and Mathematical Physics读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0278680<br><br>        <br><br>

conception 发表于 2025-3-21 23:44:21

Lecture Notes in Mathematicshttp://image.papertrans.cn/d/image/278680.jpg

Flustered 发表于 2025-3-22 02:55:22

Central Nervous System GerminomaWe discuss expansions of ..-functions into {φ.; .∈.}, where the φ. are generated from one function φ, either by translations in phase space, i.e. ., (.., .. fixed), or by translations and dilations, i.e. φ.(.)=..φ(...−..). These expansions can be used for phase space localization.

AWL 发表于 2025-3-22 05:38:05

http://reply.papertrans.cn/28/2787/278680/278680_4.png

彩色的蜡笔 发表于 2025-3-22 12:16:17

Joseph O. Deasy Ph.D,Issam El Naqa Ph.Det boundary conditions and non-negative potentials. We discuss the Payne-Pólya-Weinberger conjecture for H.=−Δ and generalize the conjecture to Schrödinger operators. Lastly, we present our recent result giving the best possible upper bound λ./λ.≤4 for one-dimensional Schrödinger operators with nonn

enmesh 发表于 2025-3-22 13:43:15

http://reply.papertrans.cn/28/2787/278680/278680_6.png

enmesh 发表于 2025-3-22 18:17:05

Differential Equations and Mathematical Physics978-3-540-47983-3Series ISSN 0075-8434 Series E-ISSN 1617-9692

anaerobic 发表于 2025-3-23 00:33:33

Augusto Giussani,Helena Uusijärvi for the understanding of nonequilibrium magnetism. We sketch a proof that, under quite general conditions, dissipative forms of these equations have attracting sets which are finite-dimensional in a suitable sense. In particular, upper bounds are obtained for the Hausdorff and fractal dimensions of these sets.

AUGER 发表于 2025-3-23 03:03:26

https://doi.org/10.1007/BFb0080575Boundary value problem; Eigenvalue; Potential; differential equation; mathematical physics; partial diffe

陈旧 发表于 2025-3-23 09:35:07

978-3-540-18479-9Springer-Verlag Berlin Heidelberg 1987
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Differential Equations and Mathematical Physics; Proceedings of an In Ian W. Knowles,Yoshimi Saitō Conference proceedings 1987 Springer-Ver