Asphyxia 发表于 2025-3-21 18:37:30

书目名称Differential Analysis on Complex Manifolds影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0278639<br><br>        <br><br>书目名称Differential Analysis on Complex Manifolds影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0278639<br><br>        <br><br>书目名称Differential Analysis on Complex Manifolds网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0278639<br><br>        <br><br>书目名称Differential Analysis on Complex Manifolds网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0278639<br><br>        <br><br>书目名称Differential Analysis on Complex Manifolds被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0278639<br><br>        <br><br>书目名称Differential Analysis on Complex Manifolds被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0278639<br><br>        <br><br>书目名称Differential Analysis on Complex Manifolds年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0278639<br><br>        <br><br>书目名称Differential Analysis on Complex Manifolds年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0278639<br><br>        <br><br>书目名称Differential Analysis on Complex Manifolds读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0278639<br><br>        <br><br>书目名称Differential Analysis on Complex Manifolds读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0278639<br><br>        <br><br>

transdermal 发表于 2025-3-21 20:48:23

http://reply.papertrans.cn/28/2787/278639/278639_2.png

allude 发表于 2025-3-22 01:35:11

http://reply.papertrans.cn/28/2787/278639/278639_3.png

担心 发表于 2025-3-22 06:12:35

Joao L. Rocha,Daniel Pomp,L. Dale Van Vleckpped with a Kähler metric). In terms of a Hermitian metric we define the Laplacian operators associated with the operators ., ∂, and ∂ and show that when the metric is Kähler that the Laplacians are related in a simple way. We shall use this relationship in Sec. 5 to prove the Hodge decomposition th

四指套 发表于 2025-3-22 10:18:51

Textbook 2008Latest editionnce the book appeared.. .From a review of the 2nd Edition:. .“..the new edition ofProfessor Wells‘ book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work.”. .Nigel Hitchin, Bulletin of the London Mathemat

IOTA 发表于 2025-3-22 16:00:13

Manifolds and Vector Bundles,nifolds, one of the principal results which will be proved in this book (see Chap. VI). The “geometry” of a manifold is, from our point of view, represented by the behavior of the tangent bundle of a given manifold. In Sec. 2 we shall develop the concept of the tangent bundle (and derived bundles) f

IOTA 发表于 2025-3-22 18:53:44

http://reply.papertrans.cn/28/2787/278639/278639_7.png

施舍 发表于 2025-3-22 23:23:31

http://reply.papertrans.cn/28/2787/278639/278639_8.png

Admire 发表于 2025-3-23 05:12:03

http://reply.papertrans.cn/28/2787/278639/278639_9.png

死亡 发表于 2025-3-23 07:43:22

0072-5285 r Wells‘ book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work.”. .Nigel Hitchin, Bulletin of the London Mathemat978-1-4419-2535-0978-0-387-73892-5Series ISSN 0072-5285 Series E-ISSN 2197-5612
页: [1] 2 3 4
查看完整版本: Titlebook: Differential Analysis on Complex Manifolds; Raymond O. Wells Textbook 2008Latest edition Springer-Verlag New York 2008 Analysis.Differenzi