积聚 发表于 2025-3-21 17:19:30
书目名称Differentiable Manifolds影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0278630<br><br> <br><br>书目名称Differentiable Manifolds影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0278630<br><br> <br><br>书目名称Differentiable Manifolds网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0278630<br><br> <br><br>书目名称Differentiable Manifolds网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0278630<br><br> <br><br>书目名称Differentiable Manifolds被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0278630<br><br> <br><br>书目名称Differentiable Manifolds被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0278630<br><br> <br><br>书目名称Differentiable Manifolds年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0278630<br><br> <br><br>书目名称Differentiable Manifolds年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0278630<br><br> <br><br>书目名称Differentiable Manifolds读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0278630<br><br> <br><br>书目名称Differentiable Manifolds读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0278630<br><br> <br><br>Mere仅仅 发表于 2025-3-21 23:56:08
http://reply.papertrans.cn/28/2787/278630/278630_2.pngExpand 发表于 2025-3-22 00:23:27
http://reply.papertrans.cn/28/2787/278630/278630_3.pnggenuine 发表于 2025-3-22 06:01:56
7 Digital Rights Management for PIRield acquires its simplest expression. Just as a vector field defines a family of curves such that through each point of the manifold there passes one of these curves, it is shown that under certain conditions, a set of vector fields (or of 1-forms) defines a family of submanifolds of a fixed dimension.吃掉 发表于 2025-3-22 09:18:22
http://reply.papertrans.cn/28/2787/278630/278630_5.pngbraggadocio 发表于 2025-3-22 14:21:29
http://reply.papertrans.cn/28/2787/278630/278630_6.pngbraggadocio 发表于 2025-3-22 18:36:38
978-3-030-45195-0Springer Nature Switzerland AG 2020可忽略 发表于 2025-3-22 21:15:43
http://reply.papertrans.cn/28/2787/278630/278630_8.pngAlbumin 发表于 2025-3-23 02:52:22
Lie Derivatives,ntiable manifold, there is a one-to-one relation between vector fields and families of transformations of the manifold onto itself. This relation is essential in the study of various symmetries, as shown in Chaps. 4, 6 and 8, and in the relationship of a Lie group with its Lie algebra, treated in Chap. 7.招惹 发表于 2025-3-23 06:23:35
http://reply.papertrans.cn/28/2787/278630/278630_10.png