LATE 发表于 2025-3-26 22:47:54

https://doi.org/10.1007/978-981-97-0323-4ondition for .-plane distributions (foliations). Although this latter topic concerns global partial differential equations, our approach will be largely qualitative, with very few explicit partial differential equations in evidence. Unless otherwise indicated, ..

AMOR 发表于 2025-3-27 02:30:29

http://reply.papertrans.cn/28/2787/278628/278628_32.png

PRISE 发表于 2025-3-27 06:03:29

http://reply.papertrans.cn/28/2787/278628/278628_33.png

蕨类 发表于 2025-3-27 11:59:17

Modern Birkhäuser Classicshttp://image.papertrans.cn/d/image/278628.jpg

reflection 发表于 2025-3-27 15:54:34

http://reply.papertrans.cn/28/2787/278628/278628_35.png

Cpr951 发表于 2025-3-27 21:06:41

http://reply.papertrans.cn/28/2787/278628/278628_36.png

Aphorism 发表于 2025-3-28 01:37:43

http://reply.papertrans.cn/28/2787/278628/278628_37.png

HACK 发表于 2025-3-28 05:37:14

http://reply.papertrans.cn/28/2787/278628/278628_38.png

圆木可阻碍 发表于 2025-3-28 09:15:54

Integration of Forms and de Rham Cohomology,s on . and was shown to have interesting topological applications. Here we generalize these ideas, using the full Grassmann algebra .*(.) to produce a graded algebra .*(.), the de Rham cohomology algebra. The proper generalization of “locally exact 1-form” is “closed .-form”, defined as a .-form tha

雇佣兵 发表于 2025-3-28 13:32:55

http://reply.papertrans.cn/28/2787/278628/278628_40.png
页: 1 2 3 [4] 5
查看完整版本: Titlebook: Differentiable Manifolds; Lawrence Conlon Textbook 2001Latest edition Birkhäuser Boston 2001 Differential Geometry.Global Calculus.Topolog