JADE 发表于 2025-3-21 17:09:56

书目名称Differentiability of Six Operators on Nonsmooth Functions and p-Variation影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0278627<br><br>        <br><br>书目名称Differentiability of Six Operators on Nonsmooth Functions and p-Variation影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0278627<br><br>        <br><br>书目名称Differentiability of Six Operators on Nonsmooth Functions and p-Variation网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0278627<br><br>        <br><br>书目名称Differentiability of Six Operators on Nonsmooth Functions and p-Variation网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0278627<br><br>        <br><br>书目名称Differentiability of Six Operators on Nonsmooth Functions and p-Variation被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0278627<br><br>        <br><br>书目名称Differentiability of Six Operators on Nonsmooth Functions and p-Variation被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0278627<br><br>        <br><br>书目名称Differentiability of Six Operators on Nonsmooth Functions and p-Variation年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0278627<br><br>        <br><br>书目名称Differentiability of Six Operators on Nonsmooth Functions and p-Variation年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0278627<br><br>        <br><br>书目名称Differentiability of Six Operators on Nonsmooth Functions and p-Variation读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0278627<br><br>        <br><br>书目名称Differentiability of Six Operators on Nonsmooth Functions and p-Variation读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0278627<br><br>        <br><br>

Mawkish 发表于 2025-3-21 20:39:49

http://reply.papertrans.cn/28/2787/278627/278627_2.png

AFFIX 发表于 2025-3-22 03:34:42

Chitra Shegar,Christopher S. Ward. Then the product integral with respect to . over [.] is defined as the limit of the product from .=1 to . of .+.(..), if it exists, where the limit is taken under refinements of partitions. It is proved that the product integral with respect to . over [.] exists if .∈..([.];)., 0<.<2, i.e., if . h

连接 发表于 2025-3-22 05:20:04

Quadrilingual Education in Singaporethe two-function composition operator .↦. into ..(Ω, μ). where .→0 in .. and 1≤.. The case where .=0, namely ., for suitable ., is a special case of the so-called Nemytskii or superposition operator, which has been extensively studied, as in the book by J. Appell and P. P. Zabrejko, Nonlinear Superp

choleretic 发表于 2025-3-22 12:46:01

Chaos and Fractals in Quantum Financeion” as studied in probability theory and defined as a limit along a sequence of partitions {..} with mesh max.(....)→0, at some rate, or where the sums converge only in probability; (b) the special case .=1 of ordinary bounded variation; or (c) sequence spaces, called James spaces.

GRATE 发表于 2025-3-22 15:25:08

http://reply.papertrans.cn/28/2787/278627/278627_6.png

GRATE 发表于 2025-3-22 18:45:23

Richard M. Dudley,Rimas NorvaišaIncludes supplementary material:

GUILE 发表于 2025-3-23 00:28:55

http://reply.papertrans.cn/28/2787/278627/278627_8.png

锉屑 发表于 2025-3-23 04:21:31

http://reply.papertrans.cn/28/2787/278627/278627_9.png

易于 发表于 2025-3-23 09:21:43

978-3-540-65975-4Springer-Verlag Berlin Heidelberg 1999
页: [1] 2 3 4
查看完整版本: Titlebook: Differentiability of Six Operators on Nonsmooth Functions and p-Variation; Richard M. Dudley,Rimas Norvaiša Book 1999 Springer-Verlag Berl