audiogram 发表于 2025-3-21 18:01:45

书目名称Diagonalization in Formal Mathematics影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0270815<br><br>        <br><br>书目名称Diagonalization in Formal Mathematics影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0270815<br><br>        <br><br>书目名称Diagonalization in Formal Mathematics网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0270815<br><br>        <br><br>书目名称Diagonalization in Formal Mathematics网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0270815<br><br>        <br><br>书目名称Diagonalization in Formal Mathematics被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0270815<br><br>        <br><br>书目名称Diagonalization in Formal Mathematics被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0270815<br><br>        <br><br>书目名称Diagonalization in Formal Mathematics年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0270815<br><br>        <br><br>书目名称Diagonalization in Formal Mathematics年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0270815<br><br>        <br><br>书目名称Diagonalization in Formal Mathematics读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0270815<br><br>        <br><br>书目名称Diagonalization in Formal Mathematics读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0270815<br><br>        <br><br>

珠宝 发表于 2025-3-21 21:52:56

http://reply.papertrans.cn/28/2709/270815/270815_2.png

吹牛需要艺术 发表于 2025-3-22 01:47:22

Conclusions and Future Work,n be applied to everyday Mathematics. We started to study in detail the Diagonalization Lemma in Chapter 3, then we moved to argue that Yablo’s Paradox is self-referential in Chapter 4. After that, in Chapter 5, we presented a common origin of several paradoxes and Löb’s Theorem; furthermore, we pre

Suggestions 发表于 2025-3-22 06:15:45

http://reply.papertrans.cn/28/2709/270815/270815_4.png

IRK 发表于 2025-3-22 10:54:51

Preliminaries,. We will also assume the main definitions and results of Category Theory, a domain where we will use the right-to-left notation (in the rest we will use the usual function notation): . will denote, in the context of categories, the composition of . with . (see for more informations).

folliculitis 发表于 2025-3-22 14:27:59

http://reply.papertrans.cn/28/2709/270815/270815_6.png

folliculitis 发表于 2025-3-22 17:12:00

http://reply.papertrans.cn/28/2709/270815/270815_7.png

conformity 发表于 2025-3-23 01:04:11

http://reply.papertrans.cn/28/2709/270815/270815_8.png

瘙痒 发表于 2025-3-23 02:29:34

http://reply.papertrans.cn/28/2709/270815/270815_9.png

gene-therapy 发表于 2025-3-23 06:48:05

R. Camassi,C.H. Caracciolo,V. Castelli. We will also assume the main definitions and results of Category Theory, a domain where we will use the right-to-left notation (in the rest we will use the usual function notation): . will denote, in the context of categories, the composition of . with . (see for more informations).
页: [1] 2 3 4 5
查看完整版本: Titlebook: Diagonalization in Formal Mathematics; Paulo Guilherme Santos Book 2020 The Editor(s) (if applicable) and The Author(s), under exclusive l