Guffaw 发表于 2025-3-21 20:05:01
书目名称Diabetic Foot Ulcers Grand Challenge影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0270472<br><br> <br><br>书目名称Diabetic Foot Ulcers Grand Challenge影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0270472<br><br> <br><br>书目名称Diabetic Foot Ulcers Grand Challenge网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0270472<br><br> <br><br>书目名称Diabetic Foot Ulcers Grand Challenge网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0270472<br><br> <br><br>书目名称Diabetic Foot Ulcers Grand Challenge被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0270472<br><br> <br><br>书目名称Diabetic Foot Ulcers Grand Challenge被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0270472<br><br> <br><br>书目名称Diabetic Foot Ulcers Grand Challenge年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0270472<br><br> <br><br>书目名称Diabetic Foot Ulcers Grand Challenge年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0270472<br><br> <br><br>书目名称Diabetic Foot Ulcers Grand Challenge读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0270472<br><br> <br><br>书目名称Diabetic Foot Ulcers Grand Challenge读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0270472<br><br> <br><br>宿醉 发表于 2025-3-21 20:16:17
Internationales Preismanagement After several experiments, we have chosen the five best transformers based on pre-trained models and only used two pre-trained transformers in parallel to extract and fuse features from the last layers of the Multi-Model. The proposed model produced Macro-Average F1 0.557 on the validation datasetHyperopia 发表于 2025-3-22 04:27:09
https://doi.org/10.1007/978-3-8349-9517-9ough the Generally Nuanced Deep Learning Framework (GaNDLF, .. Our best model was evaluated during the DFU Challenge 2021, and was ranked ., ., and . based on the macro-averaged AUC (area under the curve), macro-averaged F1 score, and macro-averaged recall metrics, respectively. Our findings supportcoagulation 发表于 2025-3-22 06:50:34
http://reply.papertrans.cn/28/2705/270472/270472_4.png礼节 发表于 2025-3-22 12:08:38
Boosting EfficientNets Ensemble Performance via Pseudo-Labels and Synthetic Images by pix2pixHD for o of 1:3. Performances of models and ensembles trained on the baseline and extended training dataset are compared. Synthetic images featured a broad qualitative variety. Results show that models trained on the extended training dataset as well as their ensemble benefit from the large extension. F1-Smitral-valve 发表于 2025-3-22 14:26:17
Efficient Multi-model Vision Transformer Based on Feature Fusion for Classification of DFUC2021 Chal After several experiments, we have chosen the five best transformers based on pre-trained models and only used two pre-trained transformers in parallel to extract and fuse features from the last layers of the Multi-Model. The proposed model produced Macro-Average F1 0.557 on the validation datasetmitral-valve 发表于 2025-3-22 17:07:27
http://reply.papertrans.cn/28/2705/270472/270472_7.pngmodest 发表于 2025-3-22 21:40:41
http://reply.papertrans.cn/28/2705/270472/270472_8.pngFree-Radical 发表于 2025-3-23 04:18:42
https://doi.org/10.1007/978-3-030-94907-5artificial intelligence; classification methods; classification models; computer networks; computer visiIngest 发表于 2025-3-23 06:32:54
http://reply.papertrans.cn/28/2705/270472/270472_10.png