acquisition 发表于 2025-3-27 00:27:43
http://reply.papertrans.cn/27/2684/268312/268312_31.png个人长篇演说 发表于 2025-3-27 04:37:29
http://reply.papertrans.cn/27/2684/268312/268312_32.pngBlood-Vessels 发表于 2025-3-27 07:23:00
http://reply.papertrans.cn/27/2684/268312/268312_33.pngA精确的 发表于 2025-3-27 11:07:36
M. Isabel Santaulària i Capdevilatheorem of Christensen stating that a metrizable and separable space . is .-compact if and only if ..(.) is analytic is proved. We show that the analyticity of ..(.) for any . implies that . is .-compact (Calbrix’s theorem). We show that ..(.) is K-analytic-framed in ℝ. if and only if ..(.) admits a敌意 发表于 2025-3-27 15:14:50
http://reply.papertrans.cn/27/2684/268312/268312_35.png攀登 发表于 2025-3-27 18:41:01
Wolfgang Van Den Daele,Wolfgang Krohnd only if (.′,.(.′,.)) is Lindelöf if and only if (.,.(.,.′)) has countable tightness. We show that every quasibarrelled space in the class . has countable tightness both for the weak and the original topologies. This extends a classical result of Kaplansky for a metrizable lcs. Although (.)-spaces向下 发表于 2025-3-28 00:33:35
http://reply.papertrans.cn/27/2684/268312/268312_37.pngDeference 发表于 2025-3-28 03:20:06
http://reply.papertrans.cn/27/2684/268312/268312_38.png摊位 发表于 2025-3-28 06:37:32
http://reply.papertrans.cn/27/2684/268312/268312_39.png违反 发表于 2025-3-28 13:23:49
https://doi.org/10.1007/978-1-349-20213-3short. In particular, we present Nakhmanson’s theorem stating that if . is a compact line such that ..(.) is a Lindelöf space, then . is second-countable. We also discuss the separable complementation property in the context of compact lines..Compact lines are relatively easy to investigate, yet the