NERVE 发表于 2025-3-21 16:21:16

书目名称Degenerate Nonlinear Diffusion Equations影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0264862<br><br>        <br><br>书目名称Degenerate Nonlinear Diffusion Equations影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0264862<br><br>        <br><br>书目名称Degenerate Nonlinear Diffusion Equations网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0264862<br><br>        <br><br>书目名称Degenerate Nonlinear Diffusion Equations网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0264862<br><br>        <br><br>书目名称Degenerate Nonlinear Diffusion Equations被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0264862<br><br>        <br><br>书目名称Degenerate Nonlinear Diffusion Equations被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0264862<br><br>        <br><br>书目名称Degenerate Nonlinear Diffusion Equations年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0264862<br><br>        <br><br>书目名称Degenerate Nonlinear Diffusion Equations年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0264862<br><br>        <br><br>书目名称Degenerate Nonlinear Diffusion Equations读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0264862<br><br>        <br><br>书目名称Degenerate Nonlinear Diffusion Equations读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0264862<br><br>        <br><br>

施舍 发表于 2025-3-21 22:04:00

0075-8434 f degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued .m.-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing

negligence 发表于 2025-3-22 01:21:00

https://doi.org/10.1007/978-3-662-06620-1s for the abstract Cauchy problem are proved in relation with the results of Kato, given in and extended by Crandall and Pazy in for the nonautonomous evolution equations with nonlinear .-accretive operators.

Malaise 发表于 2025-3-22 07:52:03

Book 2012 treated in the mathematical framework of evolution equations with multivalued .m.-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the

harmony 发表于 2025-3-22 08:46:21

http://reply.papertrans.cn/27/2649/264862/264862_5.png

Afflict 发表于 2025-3-22 14:48:23

,Existence for Nonautonomous Parabolic–Elliptic Degenerate Diffusion Equations,value problem for a fast diffusion equation in the parabolic–elliptic degenerate case, with nonhomogeneous Neumann conditions. Existence and uniqueness for the abstract Cauchy problem are proved in relation with the results of Kato, given in and extended by Crandall and Pazy in for the non

Afflict 发表于 2025-3-22 17:17:42

http://reply.papertrans.cn/27/2649/264862/264862_7.png

刻苦读书 发表于 2025-3-23 01:15:07

Book 2012aching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them.

GONG 发表于 2025-3-23 02:27:54

0075-8434 c solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them.978-3-642-28284-3978-3-642-28285-0Series ISSN 0075-8434 Series E-ISSN 1617-9692

daredevil 发表于 2025-3-23 06:15:58

https://doi.org/10.1007/978-3-662-06620-1In this chapter we are concerned with the study of some boundary value problems with initial data formulated for parabolic–elliptic degenerate diffusion equations with advection, focusing especially on the fast diffusion case which involves a free boundary problem (case (a) in Introduction).
页: [1] 2 3 4
查看完整版本: Titlebook: Degenerate Nonlinear Diffusion Equations; Angelo Favini,Gabriela Marinoschi Book 2012 Springer-Verlag Berlin Heidelberg 2012 35K35, 47Hxx,