戏弄 发表于 2025-3-21 16:16:18
书目名称Deformations of Mathematical Structures影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0264850<br><br> <br><br>书目名称Deformations of Mathematical Structures影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0264850<br><br> <br><br>书目名称Deformations of Mathematical Structures网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0264850<br><br> <br><br>书目名称Deformations of Mathematical Structures网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0264850<br><br> <br><br>书目名称Deformations of Mathematical Structures被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0264850<br><br> <br><br>书目名称Deformations of Mathematical Structures被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0264850<br><br> <br><br>书目名称Deformations of Mathematical Structures年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0264850<br><br> <br><br>书目名称Deformations of Mathematical Structures年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0264850<br><br> <br><br>书目名称Deformations of Mathematical Structures读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0264850<br><br> <br><br>书目名称Deformations of Mathematical Structures读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0264850<br><br> <br><br>RACE 发表于 2025-3-21 20:28:08
http://reply.papertrans.cn/27/2649/264850/264850_2.pngVo2-Max 发表于 2025-3-22 04:10:11
Characteristic Homomorphism for Transversely Holomorphic Foliations Via the Cauchy-Riemann Equationsllows us to modify the construction of in order to make it applicable to transversely holomorphic foliations (and even to a wide class of foliations with an integrable transverse G-structure ).Condense 发表于 2025-3-22 08:17:44
Complex Premanifolds and Foliationsll. The paper concludes with considerations concerning foliations on c.p. The concept of such objects is defined and it is proved that if c.p. is a complex manifold, then on this manifold any foliation in the new sense is the foliation in the classical sense.热情赞扬 发表于 2025-3-22 12:20:45
http://reply.papertrans.cn/27/2649/264850/264850_5.png使激动 发表于 2025-3-22 13:18:39
https://doi.org/10.1007/978-3-662-30017-6ll. The paper concludes with considerations concerning foliations on c.p. The concept of such objects is defined and it is proved that if c.p. is a complex manifold, then on this manifold any foliation in the new sense is the foliation in the classical sense.使激动 发表于 2025-3-22 20:22:50
Overview: 978-94-010-7693-7978-94-009-2643-1gusher 发表于 2025-3-22 23:23:24
https://doi.org/10.1007/978-3-662-30017-6terior admits a conformai structure which is uniformizable by some Mo̎bius b-group. On the obtained closed manifolds we introduce a uniformizable conformai structure and investigate the space of its deformations.无目标 发表于 2025-3-23 03:45:27
http://reply.papertrans.cn/27/2649/264850/264850_9.png轻浮女 发表于 2025-3-23 09:11:43
http://reply.papertrans.cn/27/2649/264850/264850_10.png