租期 发表于 2025-3-21 19:27:56
书目名称Deep Reinforcement Learning Processor Design for Mobile Applications影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0264656<br><br> <br><br>书目名称Deep Reinforcement Learning Processor Design for Mobile Applications影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0264656<br><br> <br><br>书目名称Deep Reinforcement Learning Processor Design for Mobile Applications网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0264656<br><br> <br><br>书目名称Deep Reinforcement Learning Processor Design for Mobile Applications网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0264656<br><br> <br><br>书目名称Deep Reinforcement Learning Processor Design for Mobile Applications被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0264656<br><br> <br><br>书目名称Deep Reinforcement Learning Processor Design for Mobile Applications被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0264656<br><br> <br><br>书目名称Deep Reinforcement Learning Processor Design for Mobile Applications年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0264656<br><br> <br><br>书目名称Deep Reinforcement Learning Processor Design for Mobile Applications年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0264656<br><br> <br><br>书目名称Deep Reinforcement Learning Processor Design for Mobile Applications读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0264656<br><br> <br><br>书目名称Deep Reinforcement Learning Processor Design for Mobile Applications读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0264656<br><br> <br><br>抑制 发表于 2025-3-21 20:21:10
Book 2023 (AI). The authors address acceleration systems which enable DRL on area-limited & battery-limited mobile devices.Methods are described that enable DRL optimization at the algorithm-, architecture-, and circuit-levels of abstraction..Infect 发表于 2025-3-22 01:43:32
http://reply.papertrans.cn/27/2647/264656/264656_3.pngobservatory 发表于 2025-3-22 07:34:46
http://reply.papertrans.cn/27/2647/264656/264656_4.pngGONG 发表于 2025-3-22 10:38:45
Deep Reinforcement Learning Processor Design for Mobile Applications,ltaneously. In this chapter, we propose a deep reinforcement learning accelerator that optimizes memory bandwidth and memory power consumption. The proposed accelerator optimizes memory bandwidth by dual-mode weight compression and optimizes memory power consumption with floating-point in-memory computing architecture.尊严 发表于 2025-3-22 15:51:06
DRL.Uses analysis of computational workload characteristics.This book discusses the acceleration of deep reinforcement learning (DRL), which may be the next step in the burst success of artificial intelligence (AI). The authors address acceleration systems which enable DRL on area-limited & battery尊严 发表于 2025-3-22 18:47:36
Deep Reinforcement Learning Processor Design for Mobile Applications滑稽 发表于 2025-3-23 01:04:38
Deep Reinforcement Learning Processor Design for Mobile Applications978-3-031-36793-9choroid 发表于 2025-3-23 03:37:28
http://reply.papertrans.cn/27/2647/264656/264656_9.png冒失 发表于 2025-3-23 05:56:46
http://reply.papertrans.cn/27/2647/264656/264656_10.png