战神 发表于 2025-3-21 16:46:36
书目名称Deep Reinforcement Learning影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0264653<br><br> <br><br>书目名称Deep Reinforcement Learning影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0264653<br><br> <br><br>书目名称Deep Reinforcement Learning网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0264653<br><br> <br><br>书目名称Deep Reinforcement Learning网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0264653<br><br> <br><br>书目名称Deep Reinforcement Learning被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0264653<br><br> <br><br>书目名称Deep Reinforcement Learning被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0264653<br><br> <br><br>书目名称Deep Reinforcement Learning年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0264653<br><br> <br><br>书目名称Deep Reinforcement Learning年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0264653<br><br> <br><br>书目名称Deep Reinforcement Learning读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0264653<br><br> <br><br>书目名称Deep Reinforcement Learning读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0264653<br><br> <br><br>palliative-care 发表于 2025-3-21 23:06:49
http://reply.papertrans.cn/27/2647/264653/264653_2.pngOPINE 发表于 2025-3-22 00:42:17
http://reply.papertrans.cn/27/2647/264653/264653_3.pngParallel 发表于 2025-3-22 05:15:53
http://reply.papertrans.cn/27/2647/264653/264653_4.pngbrother 发表于 2025-3-22 12:07:04
http://reply.papertrans.cn/27/2647/264653/264653_5.pngCloudburst 发表于 2025-3-22 15:14:17
Combine Deep ,-Networks with Actor-Criticral networks to approximate the optimal action-value functions. It receives only the pixels as inputs and achieves human-level performance on Atari games. Actor-critic methods transform the Monte Carlo update of the REINFORCE algorithm into the temporal-difference update for learning the policy paraCloudburst 发表于 2025-3-22 20:23:23
Challenges of Reinforcement Learning; (2) stability of training; (3) the catastrophic interference problem; (4) the exploration problems; (5) meta-learning and representation learning for the generality of reinforcement learning methods across tasks; (6) multi-agent reinforcement learning with other agents as part of the environment;移动 发表于 2025-3-22 21:21:31
Imitation Learningtential approaches, which leverages the expert demonstrations in sequential decision-making process. In order to provide the readers a comprehensive understanding about how to effectively extract information from the demonstration data, we introduce the most important categories in imitation learninInterstellar 发表于 2025-3-23 04:46:02
http://reply.papertrans.cn/27/2647/264653/264653_9.pngEndearing 发表于 2025-3-23 07:45:36
http://reply.papertrans.cn/27/2647/264653/264653_10.png