Extraneous 发表于 2025-3-21 19:50:05

书目名称Deep Learning for Hydrometeorology and Environmental Science影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0264608<br><br>        <br><br>书目名称Deep Learning for Hydrometeorology and Environmental Science影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0264608<br><br>        <br><br>书目名称Deep Learning for Hydrometeorology and Environmental Science网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0264608<br><br>        <br><br>书目名称Deep Learning for Hydrometeorology and Environmental Science网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0264608<br><br>        <br><br>书目名称Deep Learning for Hydrometeorology and Environmental Science被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0264608<br><br>        <br><br>书目名称Deep Learning for Hydrometeorology and Environmental Science被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0264608<br><br>        <br><br>书目名称Deep Learning for Hydrometeorology and Environmental Science年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0264608<br><br>        <br><br>书目名称Deep Learning for Hydrometeorology and Environmental Science年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0264608<br><br>        <br><br>书目名称Deep Learning for Hydrometeorology and Environmental Science读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0264608<br><br>        <br><br>书目名称Deep Learning for Hydrometeorology and Environmental Science读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0264608<br><br>        <br><br>

Genetics 发表于 2025-3-21 23:53:09

http://reply.papertrans.cn/27/2647/264608/264608_2.png

淘气 发表于 2025-3-22 02:32:47

http://reply.papertrans.cn/27/2647/264608/264608_3.png

THROB 发表于 2025-3-22 06:04:16

http://reply.papertrans.cn/27/2647/264608/264608_4.png

陪审团每个人 发表于 2025-3-22 09:50:26

Improving Model Performance, are explained. The basic idea of these two methods is on controlling the dataset, since repeated usage of the same dataset for training and validation might result in overfitting. Furthermore, regularization of the neural network model training by L-norm regularization and dropout of hidden nodes a

colostrum 发表于 2025-3-22 14:38:53

http://reply.papertrans.cn/27/2647/264608/264608_6.png

colostrum 发表于 2025-3-22 19:00:47

http://reply.papertrans.cn/27/2647/264608/264608_7.png

按等级 发表于 2025-3-22 21:57:21

http://reply.papertrans.cn/27/2647/264608/264608_8.png

颂扬国家 发表于 2025-3-23 02:09:27

0921-092X ues and their applications to hydrometeorological and enviro.This book provides a step-by-step methodology and derivation of deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN), especially for estimating parameters, with back-propagation as well as examples

white-matter 发表于 2025-3-23 08:47:31

Erkki Tomppo,Juha Heikkinen,Nina Vainikainen to improve the speed of convergence and to find the best trajectory to reach the optimum of the employed loss function for a network. In this chapter, those methods for updating weights are explained.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Deep Learning for Hydrometeorology and Environmental Science; Taesam Lee,Vijay P. Singh,Kyung Hwa Cho Book 2021 The Editor(s) (if applicab