CT951 发表于 2025-3-21 17:18:38
书目名称Deep Learning Theory and Applications影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0264585<br><br> <br><br>书目名称Deep Learning Theory and Applications影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0264585<br><br> <br><br>书目名称Deep Learning Theory and Applications网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0264585<br><br> <br><br>书目名称Deep Learning Theory and Applications网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0264585<br><br> <br><br>书目名称Deep Learning Theory and Applications被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0264585<br><br> <br><br>书目名称Deep Learning Theory and Applications被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0264585<br><br> <br><br>书目名称Deep Learning Theory and Applications年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0264585<br><br> <br><br>书目名称Deep Learning Theory and Applications年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0264585<br><br> <br><br>书目名称Deep Learning Theory and Applications读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0264585<br><br> <br><br>书目名称Deep Learning Theory and Applications读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0264585<br><br> <br><br>CHART 发表于 2025-3-21 23:18:39
http://reply.papertrans.cn/27/2646/264585/264585_2.pngMicroaneurysm 发表于 2025-3-22 04:09:06
http://reply.papertrans.cn/27/2646/264585/264585_3.pngArteriography 发表于 2025-3-22 05:25:06
http://reply.papertrans.cn/27/2646/264585/264585_4.png小口啜饮 发表于 2025-3-22 11:15:18
Emma Strebel,Ellen Kathrine Hansenional machine learning methods can be exploited. In particular, in the DeepWalk model, truncated random walks are employed in random walk-based approaches to capture structural links-connections between nodes. The SkipGram model is then applied to the truncated random walks to compute the embedded n为敌 发表于 2025-3-22 16:29:03
http://reply.papertrans.cn/27/2646/264585/264585_6.png为敌 发表于 2025-3-22 21:03:43
https://doi.org/10.1007/978-3-642-39655-7nge of image domains. However, the model is only able to obtain such a high performance on in-distribution samples. On out-of-distribution samples, in contrast, the performance of the model may be significantly decreased. To detect out-of-distribution samples, Papernot and McDaniel [.] introduced a减少 发表于 2025-3-22 23:54:35
http://reply.papertrans.cn/27/2646/264585/264585_8.pngperiodontitis 发表于 2025-3-23 02:21:14
http://reply.papertrans.cn/27/2646/264585/264585_9.pngCondense 发表于 2025-3-23 07:51:25
https://doi.org/10.1007/978-3-031-05014-5sing advances in computer vision and computational geometry. The conventional data processing workflow uses semantic segmentation to identify road points from three-dimensional (3D) automotive LiDAR point clouds, which have to be extended to determine its boundary points. The boundary points are cri