苍白 发表于 2025-3-23 11:09:03
https://doi.org/10.1007/978-3-642-40137-4, with increasing data sizes, it is becoming computationally expensive to perform data cube analysis. In this paper, we introduce ., an extension of MapReduce, designed for efficient parallel data cube computation on large-scale data. We also provide a general data cube materialization solution whicmediocrity 发表于 2025-3-23 16:02:05
http://reply.papertrans.cn/27/2635/263430/263430_12.pngCarbon-Monoxide 发表于 2025-3-23 19:39:08
http://reply.papertrans.cn/27/2635/263430/263430_13.png极小量 发表于 2025-3-23 23:46:57
http://reply.papertrans.cn/27/2635/263430/263430_14.png过去分词 发表于 2025-3-24 04:32:18
http://reply.papertrans.cn/27/2635/263430/263430_15.pngPastry 发表于 2025-3-24 09:52:05
https://doi.org/10.1057/9780230305663tics, namely k-hop window query, that aims to capture the properties of a local community involving the k-hop neighbors (defined on the graph structures) of each vertex. We develop a novel index, ., to facilitate efficient processing of k-hop window queries. Extensive experimental studies conductedEngaging 发表于 2025-3-24 12:19:26
http://reply.papertrans.cn/27/2635/263430/263430_17.png北京人起源 发表于 2025-3-24 17:33:36
http://reply.papertrans.cn/27/2635/263430/263430_18.pngSTANT 发表于 2025-3-24 20:39:42
Shamkant B. Navathe,Weili Wu,Hui XiongIncludes supplementary material:OPINE 发表于 2025-3-25 00:06:11
http://reply.papertrans.cn/27/2635/263430/263430_20.png