interleukins 发表于 2025-3-21 18:25:48
书目名称Database Systems for Advanced Applications影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0263395<br><br> <br><br>书目名称Database Systems for Advanced Applications影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0263395<br><br> <br><br>书目名称Database Systems for Advanced Applications网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0263395<br><br> <br><br>书目名称Database Systems for Advanced Applications网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0263395<br><br> <br><br>书目名称Database Systems for Advanced Applications被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0263395<br><br> <br><br>书目名称Database Systems for Advanced Applications被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0263395<br><br> <br><br>书目名称Database Systems for Advanced Applications年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0263395<br><br> <br><br>书目名称Database Systems for Advanced Applications年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0263395<br><br> <br><br>书目名称Database Systems for Advanced Applications读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0263395<br><br> <br><br>书目名称Database Systems for Advanced Applications读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0263395<br><br> <br><br>不可知论 发表于 2025-3-21 21:13:00
Information Networks Based Multi-semantic Data Embedding for Entity Resolutions. Recently, deep learning techniques have been substantially applied to entity resolution. We focus on entity resolution with graph based multi-semantic data embedding. In ER, data with attributes cannot be well represented by common word embeddings from natural language processing. In this work, dInsatiable 发表于 2025-3-22 02:40:11
http://reply.papertrans.cn/27/2634/263395/263395_3.pnginnate 发表于 2025-3-22 06:17:02
Empowering Transformer with Hybrid Matching Knowledge for Entity Matchingoken-level pairwise interactions within the input sequence. In this paper, we propose a novel entity matching framework named GTA. GTA enhances Transformer for relational data representation by injecting additional hybrid matching knowledge. The hybrid matching knowledge is obtained via graph contraregale 发表于 2025-3-22 12:21:38
http://reply.papertrans.cn/27/2634/263395/263395_5.pngcollagen 发表于 2025-3-22 15:39:15
Incorporating Commonsense Knowledge into Story Ending Generation via Heterogeneous Graph Networks challenges of the task lie in how to comprehend the story context sufficiently and handle the implicit knowledge behind story clues effectively, which are still under-explored by previous work. In this paper, we propose a Story Heterogeneous Graph Network (SHGN) to explicitly model both the informacollagen 发表于 2025-3-22 18:16:02
http://reply.papertrans.cn/27/2634/263395/263395_7.png万灵丹 发表于 2025-3-22 23:44:44
http://reply.papertrans.cn/27/2634/263395/263395_8.pngprolate 发表于 2025-3-23 02:13:30
http://reply.papertrans.cn/27/2634/263395/263395_9.png外观 发表于 2025-3-23 06:23:31
Aligning Internal Regularity and External Influence of Multi-granularity for Temporal Knowledge Grapthe internal and external influence at either element level or fact level. However, the multi-granularity information is essential for TKG modeling and the connection in between is also under-explored. In this paper, we propose the method that .ligning-internal .egularity and external .nfluence of .