AER
发表于 2025-3-28 17:17:13
http://reply.papertrans.cn/27/2632/263104/263104_41.png
言外之意
发表于 2025-3-28 20:25:45
http://reply.papertrans.cn/27/2632/263104/263104_42.png
doxazosin
发表于 2025-3-29 02:14:38
http://reply.papertrans.cn/27/2632/263104/263104_43.png
同时发生
发表于 2025-3-29 07:02:47
http://reply.papertrans.cn/27/2632/263104/263104_44.png
lactic
发表于 2025-3-29 10:27:34
http://reply.papertrans.cn/27/2632/263104/263104_45.png
蒸发
发表于 2025-3-29 12:38:31
ainingenvironments that support active data science learning. The textbook balances the mathematical foundations with dexterous demonstrations and examples of data, tools, modules and workflows that serve as pi978-3-030-10187-9978-3-319-72347-1
Infantry
发表于 2025-3-29 16:58:02
Linear Algebra & Matrix Computing,is generally challenging to visualize complex data, e.g., large vectors, tensors, and tables in n-dimensional Euclidian spaces (. ≥ 3). Linear algebra allows us to mathematically represent, computationally model, statistically analyze, synthetically simulate, and visually summarize such complex data.
毕业典礼
发表于 2025-3-29 20:21:19
Dimensionality Reduction,ber of features when modeling a very large number of variables. Dimension reduction can help us extract a set of “uncorrelated” principal variables and reduce the complexity of the data. We are not simply picking some of the original variables. Rather, we are constructing new “uncorrelated” variables as functions of the old features.
Rankle
发表于 2025-3-30 03:16:49
http://reply.papertrans.cn/27/2632/263104/263104_49.png
insipid
发表于 2025-3-30 07:35:36
http://reply.papertrans.cn/27/2632/263104/263104_50.png