FLIRT 发表于 2025-3-27 00:08:13
http://reply.papertrans.cn/27/2631/263079/263079_31.png没血色 发表于 2025-3-27 04:27:45
http://reply.papertrans.cn/27/2631/263079/263079_32.pngSleep-Paralysis 发表于 2025-3-27 05:23:28
http://reply.papertrans.cn/27/2631/263079/263079_33.png遭受 发表于 2025-3-27 09:33:51
http://reply.papertrans.cn/27/2631/263079/263079_34.png同谋 发表于 2025-3-27 15:39:39
Data Science and Applications978-981-99-7814-4Series ISSN 2367-3370 Series E-ISSN 2367-3389模仿 发表于 2025-3-27 19:39:35
http://reply.papertrans.cn/27/2631/263079/263079_36.pngdefray 发表于 2025-3-28 01:05:00
http://reply.papertrans.cn/27/2631/263079/263079_37.pngcorporate 发表于 2025-3-28 05:18:04
http://reply.papertrans.cn/27/2631/263079/263079_38.pngAqueous-Humor 发表于 2025-3-28 07:07:59
http://reply.papertrans.cn/27/2631/263079/263079_39.png做作 发表于 2025-3-28 13:31:21
An Optimized Approach for Sarcasm Detection Using Machine Learning Classifier,atasets, both sarcastic and non-sarcastic. The effectiveness of the models is evaluated in terms of several measures, including precision, accuracy, recall, and the F-measure. This paper uses logistic regression, a naive Bayes classifier, a linear support vector machine, a decision tree, and ensembl