细丝 发表于 2025-3-23 11:19:42
http://reply.papertrans.cn/27/2631/263069/263069_11.pngInitiative 发表于 2025-3-23 17:06:55
http://reply.papertrans.cn/27/2631/263069/263069_12.png血友病 发表于 2025-3-23 18:55:26
http://reply.papertrans.cn/27/2631/263069/263069_13.png里程碑 发表于 2025-3-23 23:57:13
Teruyo Wada,Masao Ikeda,Eiho UezatoThis chapter executes and assesses nonlinear neural networks to address binary classification using a diverse set of comprehensive Python frameworks (i.e., Scikit-Learn, Keras, and H2O).incubus 发表于 2025-3-24 06:17:16
http://reply.papertrans.cn/27/2631/263069/263069_15.pngJudicious 发表于 2025-3-24 09:31:34
https://doi.org/10.1007/978-1-4684-1605-3This chapter executes a simple dimension reducer (a principal component method) by implementing a diverse set of Python frameworks (Scikit-Learn, PySpark, and H2O). To begin, it clarifies how the method computes components.Fantasy 发表于 2025-3-24 12:23:33
http://reply.papertrans.cn/27/2631/263069/263069_17.pngAGGER 发表于 2025-3-24 17:02:11
http://reply.papertrans.cn/27/2631/263069/263069_18.pngEndemic 发表于 2025-3-24 20:11:33
http://reply.papertrans.cn/27/2631/263069/263069_19.pnginterrogate 发表于 2025-3-25 01:53:40
Survival Analysis withPySpark and Lifelines,This chapter describes and executes several survival analysis methods using the main Python frameworks (i.e., Lifelines and PySpark). It begins by explaining the underlying concept behind the Cox Proportional Hazards model. It then introduces the accelerated failure time method.