细丝
发表于 2025-3-23 11:19:42
http://reply.papertrans.cn/27/2631/263069/263069_11.png
Initiative
发表于 2025-3-23 17:06:55
http://reply.papertrans.cn/27/2631/263069/263069_12.png
血友病
发表于 2025-3-23 18:55:26
http://reply.papertrans.cn/27/2631/263069/263069_13.png
里程碑
发表于 2025-3-23 23:57:13
Teruyo Wada,Masao Ikeda,Eiho UezatoThis chapter executes and assesses nonlinear neural networks to address binary classification using a diverse set of comprehensive Python frameworks (i.e., Scikit-Learn, Keras, and H2O).
incubus
发表于 2025-3-24 06:17:16
http://reply.papertrans.cn/27/2631/263069/263069_15.png
Judicious
发表于 2025-3-24 09:31:34
https://doi.org/10.1007/978-1-4684-1605-3This chapter executes a simple dimension reducer (a principal component method) by implementing a diverse set of Python frameworks (Scikit-Learn, PySpark, and H2O). To begin, it clarifies how the method computes components.
Fantasy
发表于 2025-3-24 12:23:33
http://reply.papertrans.cn/27/2631/263069/263069_17.png
AGGER
发表于 2025-3-24 17:02:11
http://reply.papertrans.cn/27/2631/263069/263069_18.png
Endemic
发表于 2025-3-24 20:11:33
http://reply.papertrans.cn/27/2631/263069/263069_19.png
interrogate
发表于 2025-3-25 01:53:40
Survival Analysis withPySpark and Lifelines,This chapter describes and executes several survival analysis methods using the main Python frameworks (i.e., Lifelines and PySpark). It begins by explaining the underlying concept behind the Cox Proportional Hazards model. It then introduces the accelerated failure time method.