Maudlin 发表于 2025-3-21 19:16:19
书目名称Data Mining影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0262890<br><br> <br><br>书目名称Data Mining影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0262890<br><br> <br><br>书目名称Data Mining网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0262890<br><br> <br><br>书目名称Data Mining网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0262890<br><br> <br><br>书目名称Data Mining被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0262890<br><br> <br><br>书目名称Data Mining被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0262890<br><br> <br><br>书目名称Data Mining年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0262890<br><br> <br><br>书目名称Data Mining年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0262890<br><br> <br><br>书目名称Data Mining读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0262890<br><br> <br><br>书目名称Data Mining读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0262890<br><br> <br><br>contrast-medium 发表于 2025-3-21 22:49:16
http://reply.papertrans.cn/27/2629/262890/262890_2.png群岛 发表于 2025-3-22 01:35:24
http://reply.papertrans.cn/27/2629/262890/262890_3.png拖网 发表于 2025-3-22 08:12:29
Mining Interesting Rules Without Support Requirement: A General Universal Existential Upward Closureient implementations based on the antimonotony property of the support. But candidate set generation is still costly and many rules are uninteresting or redundant. In addition one can miss interesting rules like nuggets. We are thus facing a complexity issue and a quality issue..One solution is to gWatemelon 发表于 2025-3-22 09:37:50
http://reply.papertrans.cn/27/2629/262890/262890_5.png倒转 发表于 2025-3-22 14:08:57
An Extended Study of the Discriminant Random Forested decisions. Many approaches have been developed, but one of the most successful in recent times is the random forest. The discriminant random forest is a novel extension of the random forest classification methodology that leverages linear discriminant analysis to performmultivariate node splittin倒转 发表于 2025-3-22 18:12:51
http://reply.papertrans.cn/27/2629/262890/262890_7.png绝缘 发表于 2025-3-22 23:47:58
Effects of Oversampling Versus Cost-Sensitive Learning for Bayesian and SVM Classifiersling method called “generative oversampling,” which creates new data points by learning parameters for an assumed probability distribution. We then examine theoretically and empirically the effects of different forms of resampling and their relationship to cost-sensitive learning on different classi你敢命令 发表于 2025-3-23 03:40:31
http://reply.papertrans.cn/27/2629/262890/262890_9.png名字的误用 发表于 2025-3-23 08:20:51
http://reply.papertrans.cn/27/2629/262890/262890_10.png