corn732 发表于 2025-3-23 10:05:13

http://reply.papertrans.cn/27/2628/262794/262794_11.png

EVEN 发表于 2025-3-23 15:30:30

,A Client-Server Deep Federated Learning for Cross-Domain Surgical Image Segmentation,common to both the source and target domains. The clients consist of the respective domain-specific parameters and make requests to the server while learning their parameters and inferencing. We evaluate our framework in two benchmark datasets, demonstrating applicability in computer-assisted interv

deadlock 发表于 2025-3-23 19:53:21

http://reply.papertrans.cn/27/2628/262794/262794_13.png

打击 发表于 2025-3-24 02:09:06

http://reply.papertrans.cn/27/2628/262794/262794_14.png

假设 发表于 2025-3-24 02:58:48

http://reply.papertrans.cn/27/2628/262794/262794_15.png

Pulmonary-Veins 发表于 2025-3-24 10:31:25

http://reply.papertrans.cn/27/2628/262794/262794_16.png

tackle 发表于 2025-3-24 12:32:27

,Investigating Transformer Encoding Techniques to Improve Data-Driven Volume-to-Surface Liver Registation. However, view occlusion, lack of meaningful feature landmarks, and liver deformation between the pre- and intra-operative settings all contribute to the difficulty of this registration task. In this work, we leverage some of the state-of-the-art deep learning frameworks to implement and test

违法事实 发表于 2025-3-24 16:18:52

,Task-Guided Domain Gap Reduction for Monocular Depth Prediction in Endoscopy,rom real data and overfit to synthetic anatomies and properties. This work proposes a novel approach to leverage labeled synthetic and unlabeled real data. While previous domain adaptation methods indiscriminately enforce the distributions of both input data modalities to coincide, we focus on the e

Charlatan 发表于 2025-3-24 19:07:56

http://reply.papertrans.cn/27/2628/262794/262794_19.png

贫穷地活 发表于 2025-3-24 23:38:58

http://reply.papertrans.cn/27/2628/262794/262794_20.png
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Data Engineering in Medical Imaging; First MICCAI Worksho Binod Bhattarai,Sharib Ali,Danail Stoyanov Conference proceedings 2023 The Editor