法官所用 发表于 2025-3-21 17:38:40

书目名称Cyclotomic Fields影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0242571<br><br>        <br><br>书目名称Cyclotomic Fields影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0242571<br><br>        <br><br>书目名称Cyclotomic Fields网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0242571<br><br>        <br><br>书目名称Cyclotomic Fields网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0242571<br><br>        <br><br>书目名称Cyclotomic Fields被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0242571<br><br>        <br><br>书目名称Cyclotomic Fields被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0242571<br><br>        <br><br>书目名称Cyclotomic Fields年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0242571<br><br>        <br><br>书目名称Cyclotomic Fields年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0242571<br><br>        <br><br>书目名称Cyclotomic Fields读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0242571<br><br>        <br><br>书目名称Cyclotomic Fields读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0242571<br><br>        <br><br>

凝结剂 发表于 2025-3-21 21:46:56

https://doi.org/10.1007/978-94-017-8610-2), of higher .-groups (Coates-Sinnott , , ) has led to purely algebraic theorems concerned with group rings and certain ideals, formed with Bernoulli numbers (somewhat generalized, as by Leopoldt). Such ideals happen to annihilate these groups, but in many cases it is still conjectu

真实的人 发表于 2025-3-22 00:47:14

http://reply.papertrans.cn/25/2426/242571/242571_3.png

啜泣 发表于 2025-3-22 08:39:20

Environmental Contributions to Anhedonia, and getting the structure of this projective limit modulo the closure of the cyclotomic units. He considers eigenspaces for the characters of Gal(./.) where . = .(ζ) with a primitive .th root of unity ζ. Since the cyclotomic units are essentially real, we consider only even non-trivial characters.

macabre 发表于 2025-3-22 10:36:12

https://doi.org/10.1007/978-90-481-8796-6ith prime elements in a .-adic field, they construct maximal abelian totally ramified extensions by means of torsion points on formal groups, thus obtaining a merging of class field theory and Kummer theory by means of these groups.

否决 发表于 2025-3-22 16:50:01

https://doi.org/10.1007/978-90-481-8796-6otomic fields. These were extended by Coates-Wiles and Wiles to arbitrary Lubin-Tate groups. Although Wiles follows Iwasawa to a large extent, it turns out his proofs are simpler because of the formalism of the Lubin-Tate formal groups. We essentially reproduce his paper in the present c

否决 发表于 2025-3-22 18:28:10

http://reply.papertrans.cn/25/2426/242571/242571_7.png

后来 发表于 2025-3-22 23:45:24

http://reply.papertrans.cn/25/2426/242571/242571_8.png

colloquial 发表于 2025-3-23 04:33:40

http://reply.papertrans.cn/25/2426/242571/242571_9.png

garrulous 发表于 2025-3-23 06:53:18

https://doi.org/10.1007/978-94-017-8610-2The complex analytic class number formulas date back to the 19th century. They relate class numbers of cyclotomic fields and units. They arise by factoring the zeta function of a cyclotomic field in .-series, and looking at the factorization of the residue.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Cyclotomic Fields; Serge Lang Textbook 1978 Springer-Verlag, New York Inc. 1978 Fields.Kreiskörper.Prime.algebra.finite field.homomorphism