不幸的你 发表于 2025-3-21 18:28:47
书目名称Convexity from the Geometric Point of View影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0242436<br><br> <br><br>书目名称Convexity from the Geometric Point of View影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0242436<br><br> <br><br>书目名称Convexity from the Geometric Point of View网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0242436<br><br> <br><br>书目名称Convexity from the Geometric Point of View网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0242436<br><br> <br><br>书目名称Convexity from the Geometric Point of View被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0242436<br><br> <br><br>书目名称Convexity from the Geometric Point of View被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0242436<br><br> <br><br>书目名称Convexity from the Geometric Point of View年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0242436<br><br> <br><br>书目名称Convexity from the Geometric Point of View年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0242436<br><br> <br><br>书目名称Convexity from the Geometric Point of View读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0242436<br><br> <br><br>书目名称Convexity from the Geometric Point of View读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0242436<br><br> <br><br>Cytokines 发表于 2025-3-21 21:52:36
http://reply.papertrans.cn/25/2425/242436/242436_2.png强化 发表于 2025-3-22 00:41:35
http://reply.papertrans.cn/25/2425/242436/242436_3.pngMusculoskeletal 发表于 2025-3-22 08:25:34
Textbook 2024at field are presented with a highly didactic approach. Mainly directed to graduate and advanced undergraduates, the book is self-contained in such a way that it can be read by anyone who has standard undergraduate knowledge of analysis and of linear algebra. Additionally, it can be used as a singleUncultured 发表于 2025-3-22 11:38:38
http://reply.papertrans.cn/25/2425/242436/242436_5.pngMelatonin 发表于 2025-3-22 15:50:08
http://reply.papertrans.cn/25/2425/242436/242436_6.pngMelatonin 发表于 2025-3-22 18:15:24
http://reply.papertrans.cn/25/2425/242436/242436_7.png幼稚 发表于 2025-3-23 00:37:59
,Affine convex geometry – Part 2,, and they play a central role in the affine geometry of convex bodies. For example, we state and prove the ., which is stronger than the classical isoperimetric inequality. Recall that we regard the space . (of non-empty compact convex subsets of .) as a metric space (with the Hausdorff distance) eTractable 发表于 2025-3-23 03:25:12
Further selected topics,s also on the expertise and the particular interests of the authors, and this selection has two objectives: first, to show how the “common core” of the theory studied in this book is applied to obtain more profound results; and second, to bring recent research developments close to the reader.闹剧 发表于 2025-3-23 08:35:04
http://reply.papertrans.cn/25/2425/242436/242436_10.png