Coronary-Artery 发表于 2025-3-21 16:31:38
书目名称Computer Vision – ECCV 2024影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0242352<br><br> <br><br>书目名称Computer Vision – ECCV 2024影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0242352<br><br> <br><br>书目名称Computer Vision – ECCV 2024网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0242352<br><br> <br><br>书目名称Computer Vision – ECCV 2024网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0242352<br><br> <br><br>书目名称Computer Vision – ECCV 2024被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0242352<br><br> <br><br>书目名称Computer Vision – ECCV 2024被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0242352<br><br> <br><br>书目名称Computer Vision – ECCV 2024年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0242352<br><br> <br><br>书目名称Computer Vision – ECCV 2024年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0242352<br><br> <br><br>书目名称Computer Vision – ECCV 2024读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0242352<br><br> <br><br>书目名称Computer Vision – ECCV 2024读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0242352<br><br> <br><br>变形词 发表于 2025-3-21 21:25:41
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/d/image/242352.jpgAtaxia 发表于 2025-3-22 03:20:32
https://doi.org/10.1007/978-3-031-72992-8artificial intelligence; computer networks; computer systems; computer vision; education; Human-Computercrumble 发表于 2025-3-22 08:11:20
http://reply.papertrans.cn/25/2424/242352/242352_4.pngARENA 发表于 2025-3-22 11:59:47
http://reply.papertrans.cn/25/2424/242352/242352_5.pngindifferent 发表于 2025-3-22 13:35:53
Wenceslau G. Teixeira,Gilvan C. Martins detectors, leveraging the precise geometric information in LiDAR point clouds. However, existing cross-modal knowledge distillation methods tend to overlook the inherent imperfections of LiDAR, such as the ambiguity of measurements on distant or occluded objects, which should not be transferred toindifferent 发表于 2025-3-22 20:31:40
https://doi.org/10.1007/978-90-481-8725-6tend to be highly imbalanced, with a bias towards the “going straight” maneuver. Consequently, learning and accurately predicting turning maneuvers pose significant challenges. In this study, we propose a novel two-stage maneuver learning method that can overcome such strong biases by leveraging twoagitate 发表于 2025-3-23 01:07:42
http://reply.papertrans.cn/25/2424/242352/242352_8.png摇曳的微光 发表于 2025-3-23 03:36:01
https://doi.org/10.1007/978-90-481-8725-6tically fine-tune a pre-existing object detector while exploring and acquiring images in a new environment without relying on human intervention, i.e., a fully self-supervised approach. In our setting, an agent initially learns to explore the environment using a pre-trained off-the-shelf detector to假装是我 发表于 2025-3-23 08:52:58
http://reply.papertrans.cn/25/2424/242352/242352_10.png