Hormones
发表于 2025-3-23 12:23:41
Teoria locale delle superfici,) come un aperto del piano..Per realizzare questo programma, nella Sezione 3.2 definiremo precisamente la famiglia delle funzioni differenziabili su una superficie, cioè delle funzioni che saremo in grado di derivare; nella Sezione 3.4 faremo vedere come derivarle, e definiremo il concetto di differ
CAPE
发表于 2025-3-23 17:54:22
http://reply.papertrans.cn/25/2416/241554/241554_12.png
向外供接触
发表于 2025-3-23 20:48:46
http://reply.papertrans.cn/25/2416/241554/241554_13.png
ABIDE
发表于 2025-3-24 01:13:10
Il teorema di Gauss-Bonnet,oni regolari semplici piccole. Questo è sempre possibile, usando le triangolazioni che introdurremo nella Sezione 6.2 (anche se la dimostrazione dellésistenza delle triangolazioni è rimandata alla Sezione . dei Complementi a questo capitolo). In particolare, usando le triangolazioni introdurremo anc
食草
发表于 2025-3-24 05:02:41
Teoria globale delle superfici,. Nella Sezione 7.2 dimostreremo invece che le sole superfici chiuse con curvatura Gaussiana identicamente nulla sono i piani e i cilindri, e nella Sezione 7.3 che non esistono superfici chiuse con curvatura Gaussiana costante negativa. Come vedrai, le dimostrazioni di questi ultimi risultati sono p
蜡烛
发表于 2025-3-24 10:31:52
Michael S. Lee,Kathleen B. Digreivano completamente una curva nello spazio. Infine, nei Complementi a questo capitolo daremo (nella Sezione 1.4) ulteriori informazioni sulla forma locale di una curva; dimostreremo un risultato (il teorema di Whitney 1.1.7, nella Sezione 1.5) utile per capire quale non dev’essere la definizione pre
牲畜栏
发表于 2025-3-24 12:47:43
Michael S. Lee,Kathleen B. Digremento è uno dei due ingredienti chiave necessari per dimostrare, nella Sezione 2.3, il primo risultato principale di questo capitolo, il teorema della curva di Jordan. L’indice di rotazione è l’ingrediente chiave per la dimostrazione, nella Sezione 2.4, del secondo risultato principale di questo cap
Benzodiazepines
发表于 2025-3-24 17:48:00
http://reply.papertrans.cn/25/2416/241554/241554_18.png
Clumsy
发表于 2025-3-24 22:17:04
Michael S. Lee,Kathleen B. Digresto modo si ottiene una forma quadratica definita positiva su ciascun piano tangente (la .), che permette di misurare la lunghezza dei vettori tangenti alla superficie (e, come vedremo nella Sezione 4.2, anche le aree di regioni della superficie). Vale la pena di osservare fin da subito che la prima
我正派
发表于 2025-3-25 00:02:00
Michael S. Lee,Kathleen B. Digreabbiamo usato finora per studiare le superfici, ma presenta apparentemente un problema: anche nello spazio una curva con vettore tangente costante è una retta. Ma vediamo meglio cosa vuol dire “vettore tangente costante”. Il vettore tangente σ’ una curva σ: . → R. è costante se non varia; geometrica