口语 发表于 2025-3-21 16:20:42

书目名称Current Trends in Computational Modeling for Drug Discovery影响因子(影响力)<br>        http://impactfactor.cn/2024/if/?ISSN=BK0241437<br><br>        <br><br>书目名称Current Trends in Computational Modeling for Drug Discovery影响因子(影响力)学科排名<br>        http://impactfactor.cn/2024/ifr/?ISSN=BK0241437<br><br>        <br><br>书目名称Current Trends in Computational Modeling for Drug Discovery网络公开度<br>        http://impactfactor.cn/2024/at/?ISSN=BK0241437<br><br>        <br><br>书目名称Current Trends in Computational Modeling for Drug Discovery网络公开度学科排名<br>        http://impactfactor.cn/2024/atr/?ISSN=BK0241437<br><br>        <br><br>书目名称Current Trends in Computational Modeling for Drug Discovery被引频次<br>        http://impactfactor.cn/2024/tc/?ISSN=BK0241437<br><br>        <br><br>书目名称Current Trends in Computational Modeling for Drug Discovery被引频次学科排名<br>        http://impactfactor.cn/2024/tcr/?ISSN=BK0241437<br><br>        <br><br>书目名称Current Trends in Computational Modeling for Drug Discovery年度引用<br>        http://impactfactor.cn/2024/ii/?ISSN=BK0241437<br><br>        <br><br>书目名称Current Trends in Computational Modeling for Drug Discovery年度引用学科排名<br>        http://impactfactor.cn/2024/iir/?ISSN=BK0241437<br><br>        <br><br>书目名称Current Trends in Computational Modeling for Drug Discovery读者反馈<br>        http://impactfactor.cn/2024/5y/?ISSN=BK0241437<br><br>        <br><br>书目名称Current Trends in Computational Modeling for Drug Discovery读者反馈学科排名<br>        http://impactfactor.cn/2024/5yr/?ISSN=BK0241437<br><br>        <br><br>

Delude 发表于 2025-3-21 22:11:16

https://doi.org/10.1007/978-3-658-10567-9y the long process of drug design and discovery, and to optimize the selection of preferable features present in a new pharmaceutical. In this new vision, a more holistic approach can apply multiple methodologies and not only the screening of the adverse effects.

Filibuster 发表于 2025-3-22 00:42:25

Computational Toxicological Aspects in Drug Design and Discovery, Screening Adverse Effects,y the long process of drug design and discovery, and to optimize the selection of preferable features present in a new pharmaceutical. In this new vision, a more holistic approach can apply multiple methodologies and not only the screening of the adverse effects.

Enervate 发表于 2025-3-22 06:02:05

http://reply.papertrans.cn/25/2415/241437/241437_4.png

魅力 发表于 2025-3-22 09:13:35

http://reply.papertrans.cn/25/2415/241437/241437_5.png

预示 发表于 2025-3-22 13:12:39

http://reply.papertrans.cn/25/2415/241437/241437_6.png

预示 发表于 2025-3-22 20:40:01

https://doi.org/10.1007/978-3-658-10567-9ter, we provide an overview of computational SBDD workflow, and the various challenges associated with it. We also discuss strategies that could be adopted to tackle the challenges by making the best use of available information.

伪书 发表于 2025-3-23 00:15:10

http://reply.papertrans.cn/25/2415/241437/241437_8.png

constitute 发表于 2025-3-23 02:30:28

SBDD and Its Challenges,ter, we provide an overview of computational SBDD workflow, and the various challenges associated with it. We also discuss strategies that could be adopted to tackle the challenges by making the best use of available information.

abstemious 发表于 2025-3-23 05:32:44

In Silico Discovery of Class IIb HDAC Inhibitors: The State of Art,in silico studies including the virtual screening approaches have been implemented to design HDAC6 and HDAC10 inhibitors. In addition, the interactions of class IIb HDACs with their inhibitors are also highlighted extensively to get a detail insight. This chapter offers understanding for designing newer class IIb HDAC inhibitors in future.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Current Trends in Computational Modeling for Drug Discovery; Supratik Kar,Jerzy Leszczynski Book 2023 The Editor(s) (if applicable) and Th