里程表 发表于 2025-3-21 18:19:32
书目名称Cubic Fields with Geometry影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0240708<br><br> <br><br>表被动 发表于 2025-3-21 20:16:35
http://reply.papertrans.cn/25/2408/240708/240708_2.png欢笑 发表于 2025-3-22 00:45:40
http://reply.papertrans.cn/25/2408/240708/240708_3.pngBrain-Imaging 发表于 2025-3-22 07:57:24
Construction of All Cubic Fields of a Fixed Fundamental Discriminant (Renate Scheidler),dratic resolvent field. Berwick explained how each such quadratic integer determines the roots of a cubic polynomial with rational coefficients. He referred to these elements as (quadratic) generators since they are generators of ideals in the maximal order of the quadratic resolvent field whose cub终端 发表于 2025-3-22 09:17:52
http://reply.papertrans.cn/25/2408/240708/240708_5.png强壮 发表于 2025-3-22 16:26:11
http://reply.papertrans.cn/25/2408/240708/240708_6.png强壮 发表于 2025-3-22 17:15:58
,Voronoi’s Theory of Continued Fractions,field. We begin with a discussion of how Voronoi extended the idea of a simple continued fraction of a quadratic irrationality to that of a cubic irrationality. Next, we provide an account of relative minima in cubic lattices, reduced lattices (lattices in which 1 is a relative minimum), and chains混合 发表于 2025-3-22 22:38:53
Relative Minima Adjacent to 1 in a Reduced Lattice, a basis is essential for finding the relative minimum adjacent to 1 in a reduced lattice and a Voronoi basis for the lattice. A significant problem associated with this process is the need for working with rational approximations to cubic irrationals. We provide techniques for solving this problemHot-Flash 发表于 2025-3-23 05:06:57
http://reply.papertrans.cn/25/2408/240708/240708_9.png摄取 发表于 2025-3-23 09:14:11
http://reply.papertrans.cn/25/2408/240708/240708_10.png