里程表
发表于 2025-3-21 18:19:32
书目名称Cubic Fields with Geometry影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0240708<br><br> <br><br>书目名称Cubic Fields with Geometry读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0240708<br><br> <br><br>
表被动
发表于 2025-3-21 20:16:35
http://reply.papertrans.cn/25/2408/240708/240708_2.png
欢笑
发表于 2025-3-22 00:45:40
http://reply.papertrans.cn/25/2408/240708/240708_3.png
Brain-Imaging
发表于 2025-3-22 07:57:24
Construction of All Cubic Fields of a Fixed Fundamental Discriminant (Renate Scheidler),dratic resolvent field. Berwick explained how each such quadratic integer determines the roots of a cubic polynomial with rational coefficients. He referred to these elements as (quadratic) generators since they are generators of ideals in the maximal order of the quadratic resolvent field whose cub
终端
发表于 2025-3-22 09:17:52
http://reply.papertrans.cn/25/2408/240708/240708_5.png
强壮
发表于 2025-3-22 16:26:11
http://reply.papertrans.cn/25/2408/240708/240708_6.png
强壮
发表于 2025-3-22 17:15:58
,Voronoi’s Theory of Continued Fractions,field. We begin with a discussion of how Voronoi extended the idea of a simple continued fraction of a quadratic irrationality to that of a cubic irrationality. Next, we provide an account of relative minima in cubic lattices, reduced lattices (lattices in which 1 is a relative minimum), and chains
混合
发表于 2025-3-22 22:38:53
Relative Minima Adjacent to 1 in a Reduced Lattice, a basis is essential for finding the relative minimum adjacent to 1 in a reduced lattice and a Voronoi basis for the lattice. A significant problem associated with this process is the need for working with rational approximations to cubic irrationals. We provide techniques for solving this problem
Hot-Flash
发表于 2025-3-23 05:06:57
http://reply.papertrans.cn/25/2408/240708/240708_9.png
摄取
发表于 2025-3-23 09:14:11
http://reply.papertrans.cn/25/2408/240708/240708_10.png