开始从未 发表于 2025-3-25 03:43:36
http://reply.papertrans.cn/24/2393/239203/239203_21.pngprecede 发表于 2025-3-25 11:00:45
http://reply.papertrans.cn/24/2393/239203/239203_22.pngprosperity 发表于 2025-3-25 15:23:30
http://reply.papertrans.cn/24/2393/239203/239203_23.pngLament 发表于 2025-3-25 17:36:08
Covering of Discrete Quasiperiodic Sets: Concepts and Theory,al packings to spaces of dimension . > 3. Conway and Sloane, in [.] pp. 11–12, list references for applications of sphere packings in geometry and number theory, in digital communication, in chemistry and physics, in numerical approximations, and in superstring theory in mathematical physics. . are,相容 发表于 2025-3-25 22:09:23
http://reply.papertrans.cn/24/2393/239203/239203_25.png爆米花 发表于 2025-3-26 02:00:36
http://reply.papertrans.cn/24/2393/239203/239203_26.png心胸开阔 发表于 2025-3-26 05:09:21
http://reply.papertrans.cn/24/2393/239203/239203_27.png使熄灭 发表于 2025-3-26 09:31:36
The Efficiency of Delone Coverings of the Canonical Tilings ,, and ,, ,the root lattices .4 and .6, respectively [.]. The projection from the “high-dimensional lattice” . onto the space of a quasiperiodic tiling, called “parallel space” and denoted by ., is defined by the representations of noncrystallographic groups [.]. We consider a canonical quasiperiodic tiling .抵制 发表于 2025-3-26 12:47:23
http://reply.papertrans.cn/24/2393/239203/239203_29.pngellagic-acid 发表于 2025-3-26 19:06:01
http://reply.papertrans.cn/24/2393/239203/239203_30.png