开始从未 发表于 2025-3-25 03:43:36

http://reply.papertrans.cn/24/2393/239203/239203_21.png

precede 发表于 2025-3-25 11:00:45

http://reply.papertrans.cn/24/2393/239203/239203_22.png

prosperity 发表于 2025-3-25 15:23:30

http://reply.papertrans.cn/24/2393/239203/239203_23.png

Lament 发表于 2025-3-25 17:36:08

Covering of Discrete Quasiperiodic Sets: Concepts and Theory,al packings to spaces of dimension . > 3. Conway and Sloane, in [.] pp. 11–12, list references for applications of sphere packings in geometry and number theory, in digital communication, in chemistry and physics, in numerical approximations, and in superstring theory in mathematical physics. . are,

相容 发表于 2025-3-25 22:09:23

http://reply.papertrans.cn/24/2393/239203/239203_25.png

爆米花 发表于 2025-3-26 02:00:36

http://reply.papertrans.cn/24/2393/239203/239203_26.png

心胸开阔 发表于 2025-3-26 05:09:21

http://reply.papertrans.cn/24/2393/239203/239203_27.png

使熄灭 发表于 2025-3-26 09:31:36

The Efficiency of Delone Coverings of the Canonical Tilings ,, and ,, ,the root lattices .4 and .6, respectively [.]. The projection from the “high-dimensional lattice” . onto the space of a quasiperiodic tiling, called “parallel space” and denoted by ., is defined by the representations of noncrystallographic groups [.]. We consider a canonical quasiperiodic tiling .

抵制 发表于 2025-3-26 12:47:23

http://reply.papertrans.cn/24/2393/239203/239203_29.png

ellagic-acid 发表于 2025-3-26 19:06:01

http://reply.papertrans.cn/24/2393/239203/239203_30.png
页: 1 2 [3] 4
查看完整版本: Titlebook: Coverings of Discrete Quasiperiodic Sets; Theory and Applicati Peter Kramer,Zorka Papadopolos Book 2003 Springer-Verlag Berlin Heidelberg 2