Inoculare 发表于 2025-3-21 19:25:07

书目名称Counterexamples in Topology影响因子(影响力)<br>        http://impactfactor.cn/2024/if/?ISSN=BK0239091<br><br>        <br><br>书目名称Counterexamples in Topology影响因子(影响力)学科排名<br>        http://impactfactor.cn/2024/ifr/?ISSN=BK0239091<br><br>        <br><br>书目名称Counterexamples in Topology网络公开度<br>        http://impactfactor.cn/2024/at/?ISSN=BK0239091<br><br>        <br><br>书目名称Counterexamples in Topology网络公开度学科排名<br>        http://impactfactor.cn/2024/atr/?ISSN=BK0239091<br><br>        <br><br>书目名称Counterexamples in Topology被引频次<br>        http://impactfactor.cn/2024/tc/?ISSN=BK0239091<br><br>        <br><br>书目名称Counterexamples in Topology被引频次学科排名<br>        http://impactfactor.cn/2024/tcr/?ISSN=BK0239091<br><br>        <br><br>书目名称Counterexamples in Topology年度引用<br>        http://impactfactor.cn/2024/ii/?ISSN=BK0239091<br><br>        <br><br>书目名称Counterexamples in Topology年度引用学科排名<br>        http://impactfactor.cn/2024/iir/?ISSN=BK0239091<br><br>        <br><br>书目名称Counterexamples in Topology读者反馈<br>        http://impactfactor.cn/2024/5y/?ISSN=BK0239091<br><br>        <br><br>书目名称Counterexamples in Topology读者反馈学科排名<br>        http://impactfactor.cn/2024/5yr/?ISSN=BK0239091<br><br>        <br><br>

anthropologist 发表于 2025-3-21 23:41:07

http://reply.papertrans.cn/24/2391/239091/239091_2.png

SPASM 发表于 2025-3-22 02:24:27

http://reply.papertrans.cn/24/2391/239091/239091_3.png

巨硕 发表于 2025-3-22 08:29:42

Compactnessover. This difference between the separation axioms and the various forms of compactness is illustrated in the extreme by the double pointed finite complement topology (Example 18.7) which is not even T. yet does satisfy all the forms of compactness.

漂亮 发表于 2025-3-22 10:02:27

http://reply.papertrans.cn/24/2391/239091/239091_5.png

nepotism 发表于 2025-3-22 13:53:48

Metric Spacess called a .. Although a single metric wall yield a unique topology on a given set, it is possible to find more than one metric which will yield the same topology. In fact, there are always an infinite number of metrics which will yield the same metric space (Example 134).

nepotism 发表于 2025-3-22 20:07:59

http://reply.papertrans.cn/24/2391/239091/239091_7.png

过时 发表于 2025-3-23 01:06:46

http://reply.papertrans.cn/24/2391/239091/239091_8.png

outskirts 发表于 2025-3-23 04:48:21

Rainer Danielzyk,Ilse Helbrecht3 of Axiom 1 of a Moore space. Each metric space is a Moore space, but not conversely, so the search for a metrization theorem became that of determining precisely which Moore spaces are metrizable. The most famous conjecture was that each normal Moore space is metrizable.

cipher 发表于 2025-3-23 07:53:01

Conjectures and Counterexamples3 of Axiom 1 of a Moore space. Each metric space is a Moore space, but not conversely, so the search for a metrization theorem became that of determining precisely which Moore spaces are metrizable. The most famous conjecture was that each normal Moore space is metrizable.
页: [1] 2 3 4
查看完整版本: Titlebook: Counterexamples in Topology; Lynn Arthur Steen,J. Arthur Seebach Book 1978Latest edition Springer-Verlag New York Inc. 1978 Compactificati