脸红 发表于 2025-3-21 19:57:57

书目名称Core Concepts in Data Analysis: Summarization, Correlation and Visualization影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0238229<br><br>        <br><br>书目名称Core Concepts in Data Analysis: Summarization, Correlation and Visualization影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0238229<br><br>        <br><br>书目名称Core Concepts in Data Analysis: Summarization, Correlation and Visualization网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0238229<br><br>        <br><br>书目名称Core Concepts in Data Analysis: Summarization, Correlation and Visualization网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0238229<br><br>        <br><br>书目名称Core Concepts in Data Analysis: Summarization, Correlation and Visualization被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0238229<br><br>        <br><br>书目名称Core Concepts in Data Analysis: Summarization, Correlation and Visualization被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0238229<br><br>        <br><br>书目名称Core Concepts in Data Analysis: Summarization, Correlation and Visualization年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0238229<br><br>        <br><br>书目名称Core Concepts in Data Analysis: Summarization, Correlation and Visualization年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0238229<br><br>        <br><br>书目名称Core Concepts in Data Analysis: Summarization, Correlation and Visualization读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0238229<br><br>        <br><br>书目名称Core Concepts in Data Analysis: Summarization, Correlation and Visualization读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0238229<br><br>        <br><br>

Neuropeptides 发表于 2025-3-21 20:53:29

1D Analysis: Summarization and Visualization of a Single Feature,ssible: just one feature. This also provides us with a stock of useful concepts for further material. The concepts of histogram, central point and spread are presented. Two perspectives on the summaries are outlined: one is the classical probabilistic and the other of approximation, naturally extend

外面 发表于 2025-3-22 02:56:27

http://reply.papertrans.cn/24/2383/238229/238229_3.png

英寸 发表于 2025-3-22 06:27:40

http://reply.papertrans.cn/24/2383/238229/238229_4.png

apropos 发表于 2025-3-22 11:33:28

http://reply.papertrans.cn/24/2383/238229/238229_5.png

单调性 发表于 2025-3-22 15:17:32

http://reply.papertrans.cn/24/2383/238229/238229_6.png

单调性 发表于 2025-3-22 19:37:05

Hierarchical Clustering, different algorithms for divisive clustering, all three based on the same square error criterion as K-Means partitioning method. Agglomerative clustering starts from a trivial set of singletons and merges two clusters at a time. Divisive clustering splits clusters in parts and should be a more inte

对手 发表于 2025-3-22 23:33:57

Approximate and Spectral Clustering for Network and Affinity Data, chapter describes methods for finding a cluster or two-cluster split combining three types of approaches from both old and recent developments: (a)combinatorial approach that is oriented at clustering as optimization of some reasonable measure of cluster homogeneity, (b)additive clustering approach

Asperity 发表于 2025-3-23 01:45:26

Web Mining and Recommendation SystemsKohonen self-organizing maps (SOM) that tie up the sought clusters to a visually convenient two-dimensional grid. Equivalent reformulations of K-Means criterion are described – they can yield different algorithms for K-Means. One of these is explained at length: K-Means extends Principal component a

aplomb 发表于 2025-3-23 08:19:59

K-Means and Related Clustering Methods,Kohonen self-organizing maps (SOM) that tie up the sought clusters to a visually convenient two-dimensional grid. Equivalent reformulations of K-Means criterion are described – they can yield different algorithms for K-Means. One of these is explained at length: K-Means extends Principal component a
页: [1] 2 3 4 5
查看完整版本: Titlebook: Core Concepts in Data Analysis: Summarization, Correlation and Visualization; Boris Mirkin Textbook 20111st edition Springer-Verlag London