点燃 发表于 2025-3-25 06:47:32
Matrix Integral Operators on a Finite Interval with Kernels Depending on the Difference of the ArguBy ..(0, τ) (1≤ . ≤ ∞, 0 < τ < ∞) denote the Banach space of the vector functions . = {.., .., ..., ..} with entries .. ∈ ..(0, τ) and the normAnthropoid 发表于 2025-3-25 11:24:33
http://reply.papertrans.cn/24/2379/237876/237876_22.pngnauseate 发表于 2025-3-25 14:26:59
http://reply.papertrans.cn/24/2379/237876/237876_23.png权宜之计 发表于 2025-3-25 18:46:19
The Spectrum of Singular Integral Operators in ,, Spaces,First, we shall consider the simplest class of one-dimensional singular integral operators — the class of discrete Wiener-Hopf operators.Subjugate 发表于 2025-3-25 19:58:07
On an Algebra Generated by the Toeplitz Matrices in the Spaces ,,,Let .. (1<.<∞) be the Banach Hardy space of all functions ϕ(ζ) that are analytic inside the circle |ζ|=1 with the norm钻孔 发表于 2025-3-26 01:21:44
http://reply.papertrans.cn/24/2379/237876/237876_26.png河流 发表于 2025-3-26 08:11:03
http://reply.papertrans.cn/24/2379/237876/237876_27.png合群 发表于 2025-3-26 09:16:42
http://reply.papertrans.cn/24/2379/237876/237876_28.pngGullible 发表于 2025-3-26 15:49:41
One-dimensional Singular Integral Operators with Shift,Let Г be a closed or open oriented Lyapunov arc and ω(.) be a bijective mapping of Г onto itself. An operator of the form . is usually called a . ω(.). Here .(.), .(.), .(.), and .(.) are bounded measurable functions on Г, . is the operator of singular integration along Г given by . and . is the shift operator defined byotic-capsule 发表于 2025-3-26 19:46:03
http://reply.papertrans.cn/24/2379/237876/237876_30.png