Hemiplegia 发表于 2025-3-25 05:14:29

Convex Integration Theory978-3-0348-8940-7Series ISSN 1017-0480 Series E-ISSN 2296-4886

GNAW 发表于 2025-3-25 09:36:14

http://reply.papertrans.cn/24/2379/237844/237844_22.png

lattice 发表于 2025-3-25 12:09:51

http://reply.papertrans.cn/24/2379/237844/237844_23.png

Intruder 发表于 2025-3-25 19:21:00

http://reply.papertrans.cn/24/2379/237844/237844_24.png

analogous 发表于 2025-3-25 21:26:48

Analytic Theory, a space of parameters and plays no essential role. Let π :. = . × .. → ., be the product ..-bundle over the base space .. The space of continuous sections Γ(.) is identified naturally with .°(.,..). Let . ∈ Γ(.). Employing the splitting of ., one defines the derivative map ∂.. : . → .. where . ∈ [0

Colonnade 发表于 2025-3-26 01:29:47

Open Ample Relations in 1-Jet Spaces,h are open and ample. Differential relations in spaces of higher order jets and also non-ample relations are treated in subsequent chapters. There are good reasons for treating separately the cases of open, ample differential relations that occur in the context of spaces of 1-jets:

initiate 发表于 2025-3-26 05:57:46

http://reply.papertrans.cn/24/2379/237844/237844_27.png

完成才能战胜 发表于 2025-3-26 08:44:07

The Geometry of Jet Spaces, τ = . - 1). Recall the smooth affine bundle of jet spaces . Associated to the hyperplane field τ is a manifold .⊥ and a natural affine ..bundle . defined below, whose local structure provides the natural geometrical setting for applications of the main analytic approximation results of Chapter III,

monopoly 发表于 2025-3-26 16:27:50

Convex Hull Extensions,a microfibration. We recall the notation introduced in I §3. A section α ∈ Γ(.) (. = id.) is . if there is a ..-section . ∈ Γ.(.) such that ... = .α ∈ Γ(..). The relation . satisfies the . if for each α ∈ Γ(.) there is a homotopy of sections .: ↑ Γ(.), .. = α, such that the section .. is holon

政府 发表于 2025-3-26 16:50:29

http://reply.papertrans.cn/24/2379/237844/237844_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Springer Basel AG 1998 Differential topology.Manifold.Topology.diffe