Orthosis 发表于 2025-3-21 16:31:57
书目名称Convergence and Summability of Fourier Transforms and Hardy Spaces影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0237743<br><br> <br><br>书目名称Convergence and Summability of Fourier Transforms and Hardy Spaces影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0237743<br><br> <br><br>书目名称Convergence and Summability of Fourier Transforms and Hardy Spaces网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0237743<br><br> <br><br>书目名称Convergence and Summability of Fourier Transforms and Hardy Spaces网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0237743<br><br> <br><br>书目名称Convergence and Summability of Fourier Transforms and Hardy Spaces被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0237743<br><br> <br><br>书目名称Convergence and Summability of Fourier Transforms and Hardy Spaces被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0237743<br><br> <br><br>书目名称Convergence and Summability of Fourier Transforms and Hardy Spaces年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0237743<br><br> <br><br>书目名称Convergence and Summability of Fourier Transforms and Hardy Spaces年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0237743<br><br> <br><br>书目名称Convergence and Summability of Fourier Transforms and Hardy Spaces读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0237743<br><br> <br><br>书目名称Convergence and Summability of Fourier Transforms and Hardy Spaces读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0237743<br><br> <br><br>slipped-disk 发表于 2025-3-21 23:14:14
One-Dimensional Fourier TransformsIn the first two sections, we introduce the Fourier transform for Schwartz functions and we extend it to ., ., . functions as well as to tempered distributions. We prove some elementary properties and the inversion formula. In Sect. 2.4, we deal with the convergence of Dirichlet integrals. Using somABHOR 发表于 2025-3-22 01:40:06
Multi-Dimensional Hardy Spacesngst others, inequalities, atomic decompositions, interpolation theorems, boundedness results are proved for these spaces. Basically, the results for . are very similar to those for the one-dimensional . spaces studied in Chap. ., so we omit the corresponding proofs. However, the proofs for . are diCRP743 发表于 2025-3-22 07:31:14
http://reply.papertrans.cn/24/2378/237743/237743_4.pngMAUVE 发表于 2025-3-22 11:46:49
http://reply.papertrans.cn/24/2378/237743/237743_5.pngcertain 发表于 2025-3-22 16:02:02
http://reply.papertrans.cn/24/2378/237743/237743_6.pngcertain 发表于 2025-3-22 18:05:16
Convergence and Summability of Fourier Transforms and Hardy Spaces成绩上升 发表于 2025-3-22 21:20:01
2296-5009“one-stop” source to support their work. As such, the book will be useful for researchers, graduate and postgraduate students alike..978-3-319-86008-4978-3-319-56814-0Series ISSN 2296-5009 Series E-ISSN 2296-5017Celiac-Plexus 发表于 2025-3-23 03:33:10
https://doi.org/10.1007/979-8-8688-0500-4ost everywhere convergence. In Sect. 5.4, the convergence at Lebesgue points is investigated. Since the proofs are very different for different .’s, therefore each case needs new ideas. Using the result of the ..-summability, in the last section we prove the one-dimensional strong summability results presented in Sect. ..补角 发表于 2025-3-23 06:36:38
http://reply.papertrans.cn/24/2378/237743/237743_10.png