Essential 发表于 2025-3-23 10:58:16

Verletzungen der Schlagadern am Hirngrund,Let (x .) be a measurable space, and β the basic family of p-measures Q | A. Let β. ⊂ β be a subfamily, interpreted as a . which is to be tested against alternatives from β — β. .

植物群 发表于 2025-3-23 14:18:00

http://reply.papertrans.cn/24/2373/237211/237211_12.png

高原 发表于 2025-3-23 21:05:50

V. A. Tverdislov,E. N. GerasimovaLet β be a family of p-measures, and κ: β → IR a differentiable functional. Let κ(·,β the canonical gradient of κ at P.

Aqueous-Humor 发表于 2025-3-24 01:58:49

Funktionen zur Modellierung von Systemen,Let β. be the family of all distributions on B which admit a posi- tive and symmetric Lebesgue density, and β ⊃ β. a full family of distributions with positive Lebesgue density. Let p denote the Lebesgue density of P, ℓ(x,P):= log p(x), and ℓ’(x,P):= (d/dx)ℓ(x,P).

和谐 发表于 2025-3-24 04:38:48

Vasodilators in Chronic Heart FailureFor i ∈ {1,. . .,m} let (x., .) be measurable spaces. In the following, sums Σ and products ×,Π over i always run from 1 to m. Let β be a family of p-measures on ×., and κ: β → IR a functional. Our problem is to estimate κ(P) under various conditions on β.

我不明白 发表于 2025-3-24 10:32:33

http://reply.papertrans.cn/24/2373/237211/237211_16.png

不规则 发表于 2025-3-24 11:27:39

http://reply.papertrans.cn/24/2373/237211/237211_17.png

Opponent 发表于 2025-3-24 16:37:05

Introduction,This book intends to provide a basis for a unified asymptotic statistical theory, comprising parametric as well as non-parametric models.

背叛者 发表于 2025-3-24 22:12:15

The Local Structure of Families of Probability Measures,In this section we develop the concept of a tangent cone which seems appropriate for describing the . of a family of p-measures. Our purpose is to seize upon those local properties which are essential for the asymptotic performance of statistical procedures .

绕着哥哥问 发表于 2025-3-25 00:32:01

http://reply.papertrans.cn/24/2373/237211/237211_20.png
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Contributions to a General Asymptotic Statistical Theory; J. Pfanzagl Book 1982 Springer-Verlag, New York Inc. 1982 Asymptotische Wirksamk