修饰语 发表于 2025-3-25 03:36:22
M. Hoffmann,T. Goesmann,Th. Herrmannions of the singularly perturbed Klein Gordon Maxwell Proca system with homogeneous Neumann boundary conditions or for the singularly perturbed Klein Gordon Maxwell system with mixed Dirichlet Neumann homogeneous boundary conditions. We prove that .. stable critical points of the mean curvature of t过份好问 发表于 2025-3-25 10:03:52
http://reply.papertrans.cn/24/2372/237197/237197_22.pngacheon 发表于 2025-3-25 14:25:53
K. Just-Hahn,J. Hagemeyer,R. Striemer)(. − 2) and . is a positive real number which is not an even integer. Here . is a positive small parameter. We give some sufficient conditions on the function . which ensure existence of solutions to (.) blowing up at the point . as . goes to zero.发生 发表于 2025-3-25 17:08:52
http://reply.papertrans.cn/24/2372/237197/237197_24.png立即 发表于 2025-3-26 00:04:02
K. Just-Hahn,J. Hagemeyer,R. Striemerove that, for superlinear problems, the nonquadraticity condition introduced by Costa and Magalhães in (Nonlinear Anal. 23:1401–1412, 1994) is sufficient to get the compactness required by minimax procedures.squander 发表于 2025-3-26 02:47:23
M. Hoffmann,T. Goesmann,Th. Herrmannn boundary conditions on [., .], coming from the study of radial solutions in an annulus of systems containing some mathematical model for the burglary of houses. The requested a priori estimates are obtained by some unusual combination of pointwise and ..-estimates.inveigh 发表于 2025-3-26 05:07:06
Alexandre Nolasco de Carvalho,Bernhard Ruf,ThierryA tribute to Djairo Guedes de Figuerido on the occasion of his 80th birthday.Discusses recent trends and new directions of nonlinear elliptic partial differential equations and systems.Contributors reCORD 发表于 2025-3-26 11:31:39
Progress in Nonlinear Differential Equations and Their Applicationshttp://image.papertrans.cn/c/image/237197.jpgmediocrity 发表于 2025-3-26 15:48:52
Integriertes Feedback als KVP-WerkzeugWe establish a nonexistence result of positive classical solutions for a class of nonlinear Schrödinger equations involving unbounded, singular at the origin or decaying weights in dimension two. Our approach relies on the average argument.Phagocytes 发表于 2025-3-26 19:27:48
https://doi.org/10.1007/978-3-642-58652-1In this paper we prove the existence of hylomorphic solitons in the generalized KdV equation. Following (Benci, Milan J Math 77:271–332, 2009), a soliton is called hylomorphic if it is a solitary wave whose stability is due to a particular relation between energy and another integral of motion which we call hylenic charge.