Roosevelt 发表于 2025-3-21 18:50:11

书目名称Continuous Lattices影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0237006<br><br>        <br><br>书目名称Continuous Lattices影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0237006<br><br>        <br><br>书目名称Continuous Lattices网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0237006<br><br>        <br><br>书目名称Continuous Lattices网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0237006<br><br>        <br><br>书目名称Continuous Lattices被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0237006<br><br>        <br><br>书目名称Continuous Lattices被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0237006<br><br>        <br><br>书目名称Continuous Lattices年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0237006<br><br>        <br><br>书目名称Continuous Lattices年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0237006<br><br>        <br><br>书目名称Continuous Lattices读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0237006<br><br>        <br><br>书目名称Continuous Lattices读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0237006<br><br>        <br><br>

Intrepid 发表于 2025-3-22 00:01:43

"Continuity" properties in lattices of topological structures,ttices. None of the dual lattices is continuous. In particular, with respect to neither order, the topologies on X form a continuous lattice. The limitierungen on X form a continuous lattice with respect to the order defined above, but not with respect to the dual one.

昏暗 发表于 2025-3-22 01:34:16

http://reply.papertrans.cn/24/2371/237006/237006_3.png

防御 发表于 2025-3-22 04:39:05

Walter Bruck,Wolfgang Sutterlüti-th infinite cardinal. If one accepts the Continuum Hypothesis this means that the weaker relation is adequate in many posets likely to be of interest to computer science. Finally, even in the presence of the "weaker" type of basis in a complete lattice, the meet operation is continuous.

钢盔 发表于 2025-3-22 12:38:27

,A motivation and generalization of scott’s notion of a continuous lattice,of computation. Our definition of basis also generalizes that used by Markowsky and Rosen . Finally, we discuss a number of constructions which construct posets with a basis from posets with bases.

泥沼 发表于 2025-3-22 13:56:16

Propaedeutic to chain-complete posets with basis,-th infinite cardinal. If one accepts the Continuum Hypothesis this means that the weaker relation is adequate in many posets likely to be of interest to computer science. Finally, even in the presence of the "weaker" type of basis in a complete lattice, the meet operation is continuous.

泥沼 发表于 2025-3-22 18:47:37

http://reply.papertrans.cn/24/2371/237006/237006_7.png

飞镖 发表于 2025-3-22 22:23:42

http://reply.papertrans.cn/24/2371/237006/237006_8.png

丰富 发表于 2025-3-23 05:08:22

978-3-540-10848-1Springer-Verlag Berlin Heidelberg 1981

危机 发表于 2025-3-23 09:30:19

Peter Bartl,Axel Buschalla,Maria Hagemann lattices was primarily in topological terms. In , Scott discussed continuous lattices primarily from a topological point of view. However, buried in is an indication (without proof) of how to approach continuous lattices from a purely order-theoretic perspective. This order-theoretic approac
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Continuous Lattices; Proceedings of the C Bernhard Banaschewski,Rudolf-Eberhard Hoffmann Conference proceedings 1981 Springer-Verlag Berlin