Destruct 发表于 2025-3-21 17:51:28

书目名称Contemporary Research in Elliptic PDEs and Related Topics影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0236680<br><br>        <br><br>书目名称Contemporary Research in Elliptic PDEs and Related Topics影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0236680<br><br>        <br><br>书目名称Contemporary Research in Elliptic PDEs and Related Topics网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0236680<br><br>        <br><br>书目名称Contemporary Research in Elliptic PDEs and Related Topics网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0236680<br><br>        <br><br>书目名称Contemporary Research in Elliptic PDEs and Related Topics被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0236680<br><br>        <br><br>书目名称Contemporary Research in Elliptic PDEs and Related Topics被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0236680<br><br>        <br><br>书目名称Contemporary Research in Elliptic PDEs and Related Topics年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0236680<br><br>        <br><br>书目名称Contemporary Research in Elliptic PDEs and Related Topics年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0236680<br><br>        <br><br>书目名称Contemporary Research in Elliptic PDEs and Related Topics读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0236680<br><br>        <br><br>书目名称Contemporary Research in Elliptic PDEs and Related Topics读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0236680<br><br>        <br><br>

homocysteine 发表于 2025-3-21 22:01:54

2281-518X D students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research..978-3-030-18923-5978-3-030-18921-1Series ISSN 2281-518X Series E-ISSN 2281-5198

与野兽博斗者 发表于 2025-3-22 00:57:47

http://reply.papertrans.cn/24/2367/236680/236680_3.png

explicit 发表于 2025-3-22 08:15:24

,Dirichlet Problems for Fully Nonlinear Equations with “Subquadratic” Hamiltonians,, and having first order terms with power growth, we prove the existence and uniqueness of suitably defined viscosity solutions of Dirichlet problems and we further show that it is a Lipschitz continuous function.

无效 发表于 2025-3-22 12:20:05

Singularities in the Calculus of Variations,st treat the theory of linear elliptic systems and give some consequences. Then we discuss important singular solutions of De Giorgi, Giusti-Miranda, and Maz’ya to linear elliptic systems, and of Sverak-Yan in the nonlinear case. At the end we discuss the parabolic theory.

滔滔不绝地说 发表于 2025-3-22 15:33:52

http://reply.papertrans.cn/24/2367/236680/236680_6.png

滔滔不绝地说 发表于 2025-3-22 20:40:46

http://reply.papertrans.cn/24/2367/236680/236680_7.png

神秘 发表于 2025-3-23 00:23:56

http://reply.papertrans.cn/24/2367/236680/236680_8.png

摊位 发表于 2025-3-23 01:45:25

Dina Neiger,Leonid Churilov,Andrew FlitmanWe present some recent results obtained by the author on the regularity of solutions to nonlocal variational problems. In particular, we review the notion of fractional De Giorgi class, explain its role in nonlocal regularity theory, and propose some open questions in the subject.

圆锥 发表于 2025-3-23 06:15:30

http://reply.papertrans.cn/24/2367/236680/236680_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Contemporary Research in Elliptic PDEs and Related Topics; Serena Dipierro Book 2019 Springer Nature Switzerland AG 2019 Partial different