Badger 发表于 2025-3-26 23:23:59

https://doi.org/10.1007/978-3-662-10716-4e use the open book decompositions in the case of closed manifolds, and partial open book decompositions in the case of contact manifolds with convex boundary to define contact invariants in both settings, and show some applications to fillability questions.

考古学 发表于 2025-3-27 04:26:40

Contact Invariants in Floer Homology,e use the open book decompositions in the case of closed manifolds, and partial open book decompositions in the case of contact manifolds with convex boundary to define contact invariants in both settings, and show some applications to fillability questions.

不能和解 发表于 2025-3-27 05:22:09

http://reply.papertrans.cn/24/2363/236280/236280_33.png

男生如果明白 发表于 2025-3-27 10:46:52

,A Beginner’s Introduction to Fukaya Categories,essary technical detail), and briefly discuss algebraic concepts such as exact triangles and generators. Finally, we mention wrapped Fukaya categories and outline a few applications to symplectic topology, mirror symmetry and low-dimensional topology.

惊惶 发表于 2025-3-27 13:35:54

http://reply.papertrans.cn/24/2363/236280/236280_35.png

改革运动 发表于 2025-3-27 18:03:03

http://reply.papertrans.cn/24/2363/236280/236280_36.png

不近人情 发表于 2025-3-28 01:59:57

http://reply.papertrans.cn/24/2363/236280/236280_37.png

FRONT 发表于 2025-3-28 04:52:12

Lecture Notes on Embedded Contact Homology,ich in the summer of 2012, a series of accompanying blog postings at ., and related lectures at UC Berkeley in Fall 2012. There is already a brief introduction to ECH in the article of M. Hutchings (in Proceedings of the 2010 ICM, vol. II, pp. 1022–1041, .), but the present notes give much more background and detail.

铁砧 发表于 2025-3-28 07:59:57

http://reply.papertrans.cn/24/2363/236280/236280_39.png

FADE 发表于 2025-3-28 10:43:26

http://reply.papertrans.cn/24/2363/236280/236280_40.png
页: 1 2 3 [4] 5
查看完整版本: Titlebook: Contact and Symplectic Topology; Frédéric Bourgeois,Vincent Colin,András Stipsicz Book 2014 Copyright jointly owned by the János Bolyai Ma