漏出 发表于 2025-3-21 19:14:44

书目名称Constructive Methods of Wiener-Hopf Factorization影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0236111<br><br>        <br><br>书目名称Constructive Methods of Wiener-Hopf Factorization影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0236111<br><br>        <br><br>书目名称Constructive Methods of Wiener-Hopf Factorization网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0236111<br><br>        <br><br>书目名称Constructive Methods of Wiener-Hopf Factorization网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0236111<br><br>        <br><br>书目名称Constructive Methods of Wiener-Hopf Factorization被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0236111<br><br>        <br><br>书目名称Constructive Methods of Wiener-Hopf Factorization被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0236111<br><br>        <br><br>书目名称Constructive Methods of Wiener-Hopf Factorization年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0236111<br><br>        <br><br>书目名称Constructive Methods of Wiener-Hopf Factorization年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0236111<br><br>        <br><br>书目名称Constructive Methods of Wiener-Hopf Factorization读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0236111<br><br>        <br><br>书目名称Constructive Methods of Wiener-Hopf Factorization读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0236111<br><br>        <br><br>

刺耳的声音 发表于 2025-3-21 22:02:51

http://reply.papertrans.cn/24/2362/236111/236111_2.png

Infuriate 发表于 2025-3-22 00:38:26

http://reply.papertrans.cn/24/2362/236111/236111_3.png

Innocence 发表于 2025-3-22 06:09:38

On Toeplitz and Wiener-Hopf Operators with Contourwise Rational Matrix and Operator Symbols operators with symbols defined on a curve composed of several non-intersecting simple closed contours. Also criteria and explicit formulas for canonical factorization of matrix functions relative to a compound contour are presented. The matrix functions we work with are rational on each of the comp

植物茂盛 发表于 2025-3-22 11:39:01

Canonical Pseudo-Spectral Factorization and Wiener-Hopf Integral Equationstorization is introduced, and all possible factorizations of this type are described in terms of realizations of the symbol and certain supporting projections. With each canonical pseudo-spectral factorization is related a pseudo-resolvent kernel, which satisfies the resolvent identities and is used

摸索 发表于 2025-3-22 15:34:16

http://reply.papertrans.cn/24/2362/236111/236111_6.png

摸索 发表于 2025-3-22 20:38:01

http://reply.papertrans.cn/24/2362/236111/236111_7.png

Palpate 发表于 2025-3-22 22:22:22

https://doi.org/10.1007/978-3-642-02460-3y matrix. A . of W relative to the real line is a multiplicative decomposition: . in which the factors W. and W. are of the form . where k. and k. are m × m matrix functions with entries in L. (-∞,0] and L.[0, ∞), respectively, and

irreparable 发表于 2025-3-23 03:19:40

http://reply.papertrans.cn/24/2362/236111/236111_9.png

幻影 发表于 2025-3-23 09:37:28

On Toeplitz and Wiener-Hopf Operators with Contourwise Rational Matrix and Operator Symbols results are stated in terms of invertibility properties of a certain finite matrix called indicator, which is built from the realizations. The analysis does not depend on finite dimensionality and is carried out for operator valued symbols.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Constructive Methods of Wiener-Hopf Factorization; I. Gohberg,M. A. Kaashoek Book 1986 Birkhäuser Verlag Basel 1986 Eigenvalue.matrices.ma