爱管闲事
发表于 2025-3-25 03:34:36
,Zur Einschliessung des Betragskleinsten Eigenwertes bei Eigenwertaufgaben mit Gewöhnlichen Differenfor such operators the existence of a nonnegative eigenfunction belonging to the smallest positive eigenvalue of the original problem is concluded. The bounds for this eigenvalue, stemming from the quotient theorem for positive operators, are in accordance with those given in .
Acumen
发表于 2025-3-25 08:17:51
http://reply.papertrans.cn/24/2362/236108/236108_22.png
GENUS
发表于 2025-3-25 13:14:44
,Über die Konstruktion Invarianter Tori, welche von Einer Stationären Grundlösung Eines Reversiblen ameters. The remaining part of the spectrum may be arbitrary. The motion on the tori turns out to be quasiperiodic. Finally a generalized Newton method is described which enables one to construct the tori inspite of the arising difficulty with small divisors.
Inclement
发表于 2025-3-25 16:11:41
Innovationswettbewerb bei Spilloverlity inequality for the finite difference equations and another one which shows that the number of solutions is the same for the difference equations as for the boundary value problem. Our results are illustrated by two examples.
HEPA-filter
发表于 2025-3-25 20:47:25
Unternehmensstrategien im Wettbewerbϕ (x)}. The results of Benci are used to derive a variational inequality and to prove existence and uniqueness. The problem is approximated using piecewise linear finite elements and 0(h) convergence of the approximate solutions is proved using recent results due to Brezzi, Hager, and Raviart.
争吵
发表于 2025-3-26 03:32:57
http://reply.papertrans.cn/24/2362/236108/236108_26.png
巩固
发表于 2025-3-26 05:57:36
http://reply.papertrans.cn/24/2362/236108/236108_27.png
笨拙处理
发表于 2025-3-26 10:35:55
Constructive Methods for Nonlinear Boundary Value Problems and Nonlinear Oscillations978-3-0348-6283-7Series ISSN 0373-3149 Series E-ISSN 2296-6072
绊住
发表于 2025-3-26 16:26:04
http://reply.papertrans.cn/24/2362/236108/236108_29.png
Optometrist
发表于 2025-3-26 20:44:15
http://reply.papertrans.cn/24/2362/236108/236108_30.png