Capture 发表于 2025-3-25 04:41:26

http://reply.papertrans.cn/24/2356/235562/235562_21.png

FATAL 发表于 2025-3-25 10:23:20

http://reply.papertrans.cn/24/2356/235562/235562_22.png

Addictive 发表于 2025-3-25 14:52:27

http://reply.papertrans.cn/24/2356/235562/235562_23.png

pus840 发表于 2025-3-25 17:50:52

978-3-642-09925-0Springer-Verlag Berlin Heidelberg 2009

掺和 发表于 2025-3-25 23:29:18

http://reply.papertrans.cn/24/2356/235562/235562_25.png

Increment 发表于 2025-3-26 03:52:26

http://reply.papertrans.cn/24/2356/235562/235562_26.png

lipoatrophy 发表于 2025-3-26 07:31:36

Conjugate Direction Methods for Quadratic Problems,tion. Consider the problem of finding . ∈ . satisfying ., where . ∈ ., . ∈ . and . is symmetric positive definite. The solution to this problem is also a solution of the optimization problem (.): .. Consider the point x̄ such that .. We can show that (1.2) are the necessary optimality conditions for problem (1.1).

agenda 发表于 2025-3-26 10:43:17

Conjugate Gradient Methods for Nonconvex Problems,us chapter a conjugate gradient algorithm is an iterative process which requires at each iteration the current gradient and the previous direction. The simple scheme for calculating the current direction was easy to extend to a nonquadratic problem ..

真实的你 发表于 2025-3-26 14:58:06

http://reply.papertrans.cn/24/2356/235562/235562_29.png

nonplus 发表于 2025-3-26 19:28:55

https://doi.org/10.1007/3-540-36416-1inear Hestenes-Stiefel algorithm provided that the directional minimization is exact. Having that in mind and the fact that Hager and Zhang do not stipulate condition (2.68) in Theorem 2.14 their main convergence result is remarkable.
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Conjugate Gradient Algorithms in Nonconvex Optimization; Radosław Pytlak Book 2009 Springer-Verlag Berlin Heidelberg 2009 Algebra.Bound Co