Foreknowledge 发表于 2025-3-23 12:06:20

Overview: 978-3-540-16890-4978-3-642-82868-3

Armory 发表于 2025-3-23 16:45:00

http://reply.papertrans.cn/24/2355/235405/235405_12.png

恶意 发表于 2025-3-23 22:00:31

Complexity and Systemic Failuregebra su(2,2). More generally, the . T is a 4-dimensional complex vector space (T =ℂ.). It carries the natural (linear) action of the general linear group GL (4,ℂ). We shall be interested, in particular, in properties of twistors which remain invariant under the real form U(2,2) only briefly mentioning the real form. U(1) ×Spin(5,1) of GL(4,ℂ).

FAZE 发表于 2025-3-24 01:05:51

http://reply.papertrans.cn/24/2355/235405/235405_14.png

TSH582 发表于 2025-3-24 02:55:58

https://doi.org/10.1057/9780230590328The manifolds F. of Sect.2.1 admit a unique (up to a factor) SU(2,2)-invariant symplectic from. where . is a . conformal invariant 1-form on F..

使成整体 发表于 2025-3-24 07:16:43

Introduction,The conformal group -the group of angle preserving transformations of a pseudo-Riemannian manifold -seems to be playing a fundamental role in nature, a role which is yet to be fully understood and appreciated.

琐事 发表于 2025-3-24 14:26:01

http://reply.papertrans.cn/24/2355/235405/235405_17.png

有害处 发表于 2025-3-24 15:31:13

Trieste Notes in Physicshttp://image.papertrans.cn/c/image/235405.jpg

Graduated 发表于 2025-3-24 21:41:22

The Conformal Group of a Conformally Flat Space Time and Its Twistor Representations,: U →’U of a neighbourhood U ⊂M onto ‘U⊂’M is said to be . if the corresponding tangent map φ. preserves the angles. In a slightly more technical language this means that for given coordinates X. and ’X.on U and ’U we have

全国性 发表于 2025-3-25 03:06:31

Twistor Flag Manifolds and SU(2,2) Orbits,gebra su(2,2). More generally, the . T is a 4-dimensional complex vector space (T =ℂ.). It carries the natural (linear) action of the general linear group GL (4,ℂ). We shall be interested, in particular, in properties of twistors which remain invariant under the real form U(2,2) only briefly mentioning the real form. U(1) ×Spin(5,1) of GL(4,ℂ).
页: 1 [2] 3 4
查看完整版本: Titlebook: Conformal Description of Spinning Particles; Ivan T. Todorov Book 1986 Springer-Verlag Berlin Heidelberg 1986 Minkowski space.Minkowski sp