Reagan 发表于 2025-3-21 20:04:47

书目名称Conference on the Numerical Solution of Differential Equations影响因子(影响力)<br>        http://impactfactor.cn/2024/if/?ISSN=BK0235282<br><br>        <br><br>书目名称Conference on the Numerical Solution of Differential Equations影响因子(影响力)学科排名<br>        http://impactfactor.cn/2024/ifr/?ISSN=BK0235282<br><br>        <br><br>书目名称Conference on the Numerical Solution of Differential Equations网络公开度<br>        http://impactfactor.cn/2024/at/?ISSN=BK0235282<br><br>        <br><br>书目名称Conference on the Numerical Solution of Differential Equations网络公开度学科排名<br>        http://impactfactor.cn/2024/atr/?ISSN=BK0235282<br><br>        <br><br>书目名称Conference on the Numerical Solution of Differential Equations被引频次<br>        http://impactfactor.cn/2024/tc/?ISSN=BK0235282<br><br>        <br><br>书目名称Conference on the Numerical Solution of Differential Equations被引频次学科排名<br>        http://impactfactor.cn/2024/tcr/?ISSN=BK0235282<br><br>        <br><br>书目名称Conference on the Numerical Solution of Differential Equations年度引用<br>        http://impactfactor.cn/2024/ii/?ISSN=BK0235282<br><br>        <br><br>书目名称Conference on the Numerical Solution of Differential Equations年度引用学科排名<br>        http://impactfactor.cn/2024/iir/?ISSN=BK0235282<br><br>        <br><br>书目名称Conference on the Numerical Solution of Differential Equations读者反馈<br>        http://impactfactor.cn/2024/5y/?ISSN=BK0235282<br><br>        <br><br>书目名称Conference on the Numerical Solution of Differential Equations读者反馈学科排名<br>        http://impactfactor.cn/2024/5yr/?ISSN=BK0235282<br><br>        <br><br>

paleolithic 发表于 2025-3-21 23:14:26

Alternating direction methods for parabolic equations in two and three space dimensions with mixed se, and three tridiagonal sets of equations in the three space dimensional case. Several theorems are stated showing the methods to be unconditionally stable for certain ranges of an auxiliary parameter. Reference is made to other authors and numerical results are mentioned.

Rct393 发表于 2025-3-22 03:24:53

http://reply.papertrans.cn/24/2353/235282/235282_3.png

诱使 发表于 2025-3-22 06:31:07

http://reply.papertrans.cn/24/2353/235282/235282_4.png

狂乱 发表于 2025-3-22 10:26:00

http://reply.papertrans.cn/24/2353/235282/235282_5.png

Truculent 发表于 2025-3-22 14:47:04

Transducers for Linear and Rotary Movement,The truncation error in single step methods for ordinary differential equations may be bounded by terms which represent quadrature remainders. The remainders may be determined by applying Peano‘s theorem and this treatment suggests a variety of methods based on quadrature rules. In some cases the error bounds improve on classical results.

Truculent 发表于 2025-3-22 19:40:26

L. A. Dykstra,A. J. Bertalmio,J. H. WoodsIn this paper optimal order, k-step methods with one nonstep point for the numerical solution of y‘ = f(x,y) y(a) = n, introduced by Gragg and Stetter (1) are extended to an arbitrary number s of nonstep points. These methods have order 2k + 2s, are proved stable for k ≤ 8, s ≥ 2, and not stable for large k.

受辱 发表于 2025-3-22 23:38:25

Series of the Centro De Estudios CientíficosThis paper gives new finite difference formulae which are suitable for the numerical integration of stiff systems of ordinary differential equations. The method is exact if the problem is of the type y. = Py + Q(x) where P is a constant and Q(x) a polynomial of degree q. When P = 0 the method is identical with the Adams-Bashforth formulae.

Aboveboard 发表于 2025-3-23 03:50:38

http://reply.papertrans.cn/24/2353/235282/235282_9.png

exostosis 发表于 2025-3-23 08:02:51

http://reply.papertrans.cn/24/2353/235282/235282_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Conference on the Numerical Solution of Differential Equations; Held in Dundee/Scotl J. Li. Morris Conference proceedings 1969 Springer-Ver