寄生虫 发表于 2025-3-23 13:44:27

Uniform Relative Stability for Gaussian Arrays,c results of Simeon Berman are recovered and extended. The proofs utilize tools such as Slepian’s lemma, the Sudakov–Fernique inequality, as well as, a curious result on the structure of correlation matrices derived using elementary Ramsey’s theory.

怒目而视 发表于 2025-3-23 15:37:48

http://reply.papertrans.cn/24/2349/234858/234858_12.png

品牌 发表于 2025-3-23 18:32:02

2365-4333 imation for sparse signals observed with noise.Gives an appl.This book provides a unified exposition of some fundamental theoretical problems in high-dimensional statistics. It specifically considers the canonical problems of detection and support estimation for sparse signals observed with noise. N

Infusion 发表于 2025-3-23 22:16:54

http://reply.papertrans.cn/24/2349/234858/234858_14.png

加强防卫 发表于 2025-3-24 04:22:30

http://reply.papertrans.cn/24/2349/234858/234858_15.png

热心 发表于 2025-3-24 09:50:01

2365-4333 ction to a concentration of maxima probabilistic phenomenon, the authors obtain a complete characterization of the exact support recovery problem for thresholding estimators under dependent errors. .978-3-030-80963-8978-3-030-80964-5Series ISSN 2365-4333 Series E-ISSN 2365-4341

解决 发表于 2025-3-24 13:32:30

http://reply.papertrans.cn/24/2349/234858/234858_17.png

Ankylo- 发表于 2025-3-24 18:06:56

http://reply.papertrans.cn/24/2349/234858/234858_18.png

间接 发表于 2025-3-24 22:52:13

SpringerBriefs in Probability and Mathematical Statisticshttp://image.papertrans.cn/c/image/234858.jpg

aspect 发表于 2025-3-25 01:46:08

J. A. Ball,I. Gohberg,M. A. Kaashoeksignal support estimation problems. This is done in the context of two general models—the signal-plus-noise model and the chi-square model arising in genome-wide association studies. Motivating applications of these two problems and two models are briefly discussed. The chapter concludes with a summ
页: 1 [2] 3 4
查看完整版本: Titlebook: Concentration of Maxima and Fundamental Limits in High-Dimensional Testing and Inference; Zheng Gao,Stilian Stoev Book 2021 The Author(s),