fundoplication 发表于 2025-3-21 17:58:42
书目名称Concentration Analysis and Applications to PDE影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0234851<br><br> <br><br>书目名称Concentration Analysis and Applications to PDE影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0234851<br><br> <br><br>书目名称Concentration Analysis and Applications to PDE网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0234851<br><br> <br><br>书目名称Concentration Analysis and Applications to PDE网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0234851<br><br> <br><br>书目名称Concentration Analysis and Applications to PDE被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0234851<br><br> <br><br>书目名称Concentration Analysis and Applications to PDE被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0234851<br><br> <br><br>书目名称Concentration Analysis and Applications to PDE年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0234851<br><br> <br><br>书目名称Concentration Analysis and Applications to PDE年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0234851<br><br> <br><br>书目名称Concentration Analysis and Applications to PDE读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0234851<br><br> <br><br>书目名称Concentration Analysis and Applications to PDE读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0234851<br><br> <br><br>BURSA 发表于 2025-3-21 23:57:09
,The Ljapunov–Schmidt Reduction for Some Critical Problems,r and ..In particular, we prove existence and multiplicity of positive and sign changing solutions which blow-up or blow-down at one or more points of the domain as the parameter є goes to zero. The main tool is the Ljapunov–Schmidt reduction method.事先无准备 发表于 2025-3-22 02:19:03
Concentration Analysis and Cocompactness,file decompositions are formulated in relation to a triplet (.), where . and . are Banach spaces, . ↪ . , and . is, typically, a set of surjective isometries on both . and .. A profile decomposition is a representation of a bounded sequence in . as a sum of elementary concentrations of the form . .,伴随而来 发表于 2025-3-22 05:40:44
,A Note on Non-radial Sign-changing Solutions for the Schrödinger–Poisson Problem in the Semiclassicassical limit. Indeed we construct non-radial multi-peak solutions with an arbitrary large number of positive and negative peaks which are displaced in suitable symmetric configurations and which collapse to the same point as ϵ ⟶ 0. The proof is based on the Lyapunov–Schmidt reduction.ICLE 发表于 2025-3-22 12:44:46
http://reply.papertrans.cn/24/2349/234851/234851_5.pngantecedence 发表于 2025-3-22 16:31:01
http://reply.papertrans.cn/24/2349/234851/234851_6.pngantecedence 发表于 2025-3-22 20:49:44
http://reply.papertrans.cn/24/2349/234851/234851_7.png眼界 发表于 2025-3-23 00:01:43
http://reply.papertrans.cn/24/2349/234851/234851_8.png内疚 发表于 2025-3-23 03:06:05
https://doi.org/10.1007/0-387-31074-6We compute the best constants in some dilation invariant inequalities for the weighted ., with weights being powers of the distance from the origin.粗糙 发表于 2025-3-23 08:46:31
http://reply.papertrans.cn/24/2349/234851/234851_10.png