Oafishness 发表于 2025-3-30 11:04:46
http://reply.papertrans.cn/24/2348/234772/234772_51.pngAllodynia 发表于 2025-3-30 13:08:55
Phasenzerfall und Phasengleichgewichteer-valued clocks. Due to careful restrictions on queue usage, the binary reachability (the set of all pairs of configurations (.) of an . such that . can reach . through zero or more transitions) is effectively semilinear. We then prove the decidability of a class of Presburger formulae defined overhangdog 发表于 2025-3-30 16:49:29
http://reply.papertrans.cn/24/2348/234772/234772_53.pngHEDGE 发表于 2025-3-30 23:14:06
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/234772.jpgLIKEN 发表于 2025-3-31 01:34:27
http://reply.papertrans.cn/24/2348/234772/234772_55.pngcommute 发表于 2025-3-31 09:06:53
Subexponential-Time Algorithms for Maximum Independent Set and Related Problems on Box Graphsonential algorithms for maximum independent set and the maximum induced subgraph with polynomial-time testable hereditary property . problems can yield non-trivial upper bounds on approximation factors achievable in polynomial time.Jocose 发表于 2025-3-31 09:30:39
On Even Triangulations of 2-Connected Embedded Graphse existence of even triangulations for similar graphs on high genus surfaces. Hence we show that Hoffmann and Kriegel’s theorem remains valid for such graphs. Our new proof leads to a very simple linear time algorithm for finding even triangulations.Fsh238 发表于 2025-3-31 14:42:32
List Total Colorings of Series-Parallel Graphsand . of ., respectively. The theorem implies that any series-parallel graph . has a total coloring with .+1 colors if . ≥ 4. We finally present a linear-time algorithm to find a list total coloring of a given series-parallel graph . if . satisfies the sufficient condition.Affable 发表于 2025-3-31 19:14:27
http://reply.papertrans.cn/24/2348/234772/234772_59.pngPillory 发表于 2025-4-1 01:41:56
,Modellprozesse für Stoffumwandlungen,onential algorithms for maximum independent set and the maximum induced subgraph with polynomial-time testable hereditary property . problems can yield non-trivial upper bounds on approximation factors achievable in polynomial time.