闸门 发表于 2025-3-21 19:17:59
书目名称Computing and Combinatorics影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0234767<br><br> <br><br>书目名称Computing and Combinatorics影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0234767<br><br> <br><br>书目名称Computing and Combinatorics网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0234767<br><br> <br><br>书目名称Computing and Combinatorics网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0234767<br><br> <br><br>书目名称Computing and Combinatorics被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0234767<br><br> <br><br>书目名称Computing and Combinatorics被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0234767<br><br> <br><br>书目名称Computing and Combinatorics年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0234767<br><br> <br><br>书目名称Computing and Combinatorics年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0234767<br><br> <br><br>书目名称Computing and Combinatorics读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0234767<br><br> <br><br>书目名称Computing and Combinatorics读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0234767<br><br> <br><br>famine 发表于 2025-3-21 20:16:05
http://reply.papertrans.cn/24/2348/234767/234767_2.png上釉彩 发表于 2025-3-22 03:10:31
Boxicity and Poset Dimension,..]×[..,..]× ⋯ ×[..,..]. The . of ., box(.) is the minimum integer . such that . can be represented as the intersection graph of .-dimensional boxes, i.e. each vertex is mapped to a .-dimensional box and two vertices are adjacent in . if and only if their corresponding boxes intersect. Let . be a p连词 发表于 2025-3-22 07:18:21
On the Hardness against Constant-Depth Linear-Size Circuitsation, as there are general derandomization results which are based on the assumption that average-case hard functions exist. However, to achieve a complete derandomization, one usually needs a function which is extremely hard against a complexity class, in the sense that any algorithm in the classjovial 发表于 2025-3-22 11:14:54
http://reply.papertrans.cn/24/2348/234767/234767_5.png绕着哥哥问 发表于 2025-3-22 16:25:45
The Curse of Connectivity: ,-Total Vertex (Edge) Coverly .-. and .-.. Specifically, we impose the additional requirement that each connected component of a solution have at least . vertices (resp. edges from the solution), and call the problem .-. (resp. .-.). We show that绕着哥哥问 发表于 2025-3-22 19:21:33
http://reply.papertrans.cn/24/2348/234767/234767_7.png强制令 发表于 2025-3-22 22:53:30
http://reply.papertrans.cn/24/2348/234767/234767_8.png结构 发表于 2025-3-23 05:13:10
http://reply.papertrans.cn/24/2348/234767/234767_9.png咯咯笑 发表于 2025-3-23 09:05:45
Clustering with or without the Approximationollow-up papers. The input for the clustering problem consists of points in a metric space and a number ., specifying the desired number of clusters. The algorithms find a clustering that is provably close to a target clustering, provided that the instance has the “( 1 + ., .)-property”, which means