credit 发表于 2025-3-21 18:18:12

书目名称Computing and Combinatorics影响因子(影响力)<br>        http://impactfactor.cn/2024/if/?ISSN=BK0234762<br><br>        <br><br>书目名称Computing and Combinatorics影响因子(影响力)学科排名<br>        http://impactfactor.cn/2024/ifr/?ISSN=BK0234762<br><br>        <br><br>书目名称Computing and Combinatorics网络公开度<br>        http://impactfactor.cn/2024/at/?ISSN=BK0234762<br><br>        <br><br>书目名称Computing and Combinatorics网络公开度学科排名<br>        http://impactfactor.cn/2024/atr/?ISSN=BK0234762<br><br>        <br><br>书目名称Computing and Combinatorics被引频次<br>        http://impactfactor.cn/2024/tc/?ISSN=BK0234762<br><br>        <br><br>书目名称Computing and Combinatorics被引频次学科排名<br>        http://impactfactor.cn/2024/tcr/?ISSN=BK0234762<br><br>        <br><br>书目名称Computing and Combinatorics年度引用<br>        http://impactfactor.cn/2024/ii/?ISSN=BK0234762<br><br>        <br><br>书目名称Computing and Combinatorics年度引用学科排名<br>        http://impactfactor.cn/2024/iir/?ISSN=BK0234762<br><br>        <br><br>书目名称Computing and Combinatorics读者反馈<br>        http://impactfactor.cn/2024/5y/?ISSN=BK0234762<br><br>        <br><br>书目名称Computing and Combinatorics读者反馈学科排名<br>        http://impactfactor.cn/2024/5yr/?ISSN=BK0234762<br><br>        <br><br>

BLUSH 发表于 2025-3-21 23:33:55

Heat Penetration in Packaged Foods,a .(. loglog .). They include .-balanced trees, red-black trees, BB [α]-trees, and (., .)-trees. ., trees in the same classes admit .(.(loglog .).)-area strictly upward straight-line drawings that preserve the left-to-right ordering of the children of each vertex. Finally, we discuss an extension of

pellagra 发表于 2025-3-22 01:21:45

http://reply.papertrans.cn/24/2348/234762/234762_3.png

健谈的人 发表于 2025-3-22 08:09:16

http://reply.papertrans.cn/24/2348/234762/234762_4.png

HARP 发表于 2025-3-22 09:17:52

http://reply.papertrans.cn/24/2348/234762/234762_5.png

尖叫 发表于 2025-3-22 13:22:21

On sparse parity check matrices (extended abstract),at each . columns are linearly independent modulo 2. For fixed integers . ≥ 2 and . ≥ 1, we show the probabilistic lower bound .(.) = Ω(..); for . a power of 2, we prove the upper bound .(.) = .(..), which matches the lower bound for infinitely many values of .. We give some explicit constructions.

尖叫 发表于 2025-3-22 20:14:56

http://reply.papertrans.cn/24/2348/234762/234762_7.png

GENRE 发表于 2025-3-23 00:30:21

http://reply.papertrans.cn/24/2348/234762/234762_8.png

组装 发表于 2025-3-23 05:13:56

A note on the simulation of exponential threshold weights, .. can be computed (“simulated”) in threshold . 2 with polynomial size. In this paper, we modify the method from to obtain an improvement in two respects: The approach described here is simpler and the size of the simulating circuit is smaller.

irritation 发表于 2025-3-23 07:52:43

http://reply.papertrans.cn/24/2348/234762/234762_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Computing and Combinatorics; Second Annual Intern Jin-Yi Cai,Chak Kuen Wong Conference proceedings 1996 Springer-Verlag Berlin Heidelberg 1