INCUR 发表于 2025-3-23 13:38:44

,Meta-Learning with Less Forgetting on Large-Scale Non-Stationary Task Distributions,tributions sequentially arrive with some ORDER), to tackle these two major challenges. Specifically, our ORDER introduces a novel mutual information regularization to robustify the model with unlabeled OOD data and adopts an optimal transport regularization to remember previously learned knowledge i

crockery 发表于 2025-3-23 15:04:41

,DnA: Improving Few-Shot Transfer Learning with Low-Rank Decomposition and Alignment,the low-rank subspace), and the extra flexibility to absorb the new out-of-the-domain knowledge (via freeing the sparse residual). Our resultant framework, termed Decomposition-and-Alignment (.), significantly improves the few-shot transfer performance of the SS pre-trained model to downstream tasks

打包 发表于 2025-3-23 18:22:27

http://reply.papertrans.cn/24/2343/234275/234275_13.png

无效 发表于 2025-3-23 22:10:36

,Open-World Semantic Segmentation via Contrasting and Clustering Vision-Language Embedding,mage encoder is jointly trained with a vision-based contrasting and a cross-modal contrasting, which encourage the visual embeddings to preserve both fine-grained semantics and high-level category information that are crucial for the segmentation task. Furthermore, an online clustering head is devis

Essential 发表于 2025-3-24 05:49:11

http://reply.papertrans.cn/24/2343/234275/234275_15.png

火海 发表于 2025-3-24 07:34:52

http://reply.papertrans.cn/24/2343/234275/234275_16.png

OTTER 发表于 2025-3-24 12:16:29

http://reply.papertrans.cn/24/2343/234275/234275_17.png

aristocracy 发表于 2025-3-24 18:04:44

http://reply.papertrans.cn/24/2343/234275/234275_18.png

Servile 发表于 2025-3-24 19:07:34

http://reply.papertrans.cn/24/2343/234275/234275_19.png

易碎 发表于 2025-3-25 02:13:32

http://reply.papertrans.cn/24/2343/234275/234275_20.png
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app